On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion Yair Bartal1 Arnold Filtser2 Ofer Neiman2 1 HebrewUniversityofJerusalem 2 Ben-GurionUniversityoftheNegev January 11, 2016 Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 1/21 For details: www.cs.bgu.ac.il/~arnoldf/ Warning The talk is about an improved version of the paper. Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 2/21 Warning The talk is about an improved version of the paper. For details: www.cs.bgu.ac.il/~arnoldf/ Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 2/21 Distortion f has distortion t if for every x,y X, ∈ d (x,y) d (f (x),f (y)) t d (x,y) . X Y X ≤ ≤ · Average distortion 1 (cid:88) dY(f(v),f(u)) (cid:0)X (cid:1) · d (v,u) |2| v,u X X ∈ Embedding Embedding (X,d ),(Y,d ) metric spaces. X Y f : (X,d ) (Y,d ) is called an embedding. X Y → Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 3/21 Average distortion 1 (cid:88) dY(f(v),f(u)) (cid:0)X (cid:1) · d (v,u) |2| v,u X X ∈ Embedding Embedding (X,d ),(Y,d ) metric spaces. X Y f : (X,d ) (Y,d ) is called an embedding. X Y → Distortion f has distortion t if for every x,y X, ∈ d (x,y) d (f (x),f (y)) t d (x,y) . X Y X ≤ ≤ · Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 3/21 Embedding Embedding (X,d ),(Y,d ) metric spaces. X Y f : (X,d ) (Y,d ) is called an embedding. X Y → Distortion f has distortion t if for every x,y X, ∈ d (x,y) d (f (x),f (y)) t d (x,y) . X Y X ≤ ≤ · Average distortion 1 (cid:88) dY(f(v),f(u)) (cid:0)X (cid:1) · d (v,u) |2| v,u X X ∈ Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 3/21 (cid:80) w(e) The lightness of a H is Ψ(H) = e∈EH . w(MST) Spanner Graph spanner Given a weighted graph G = (V,E,w), a subgraph H = (V,E ,w) of G H is a spanner of G with distortion t if u,v V, d (u,v) t d (u,v) H G ∀ ∈ ≤ · Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 4/21 Spanner Graph spanner Given a weighted graph G = (V,E,w), a subgraph H = (V,E ,w) of G H is a spanner of G with distortion t if u,v V, d (u,v) t d (u,v) H G ∀ ∈ ≤ · (cid:80) w(e) The lightness of a H is Ψ(H) = e∈EH . w(MST) Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 4/21 Spanner Graph spanner Given a weighted graph G = (V,E,w), a subgraph H = (V,E ,w) of G H is a spanner of G with distortion t if u,v V, d (u,v) t d (u,v) H G ∀ ∈ ≤ · (cid:80) w(e) The lightness of a H is Ψ(H) = e∈EH . w(MST) Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 4/21 The MST has lightness 1! But unbounded average distortion... Theorem (Abraham, Bartal and Neiman 2006) Every weighted graph contains a spanning tree with O(1) average distortion. But unbounded lightness... Lightness vs Average Distortion in Trees G = (V,E,w) is a weighted graph. Y.Bartal,A.Filtser,O.Neiman OnNotionsofDistortion January11,2016 5/21
Description: