ebook img

On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals

ON GENERALIZATION OF DIFFERENT TYPE INEQUALITIES FOR HARMONICALLY QUASI-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS 4 1 0 I˙MDATI˙S¸CAN 2 n Abstract. In this paper, we obtained somenew estimates ongeneralization a of Hadamard, Ostrowski and Simpson-like type inequalities for harmonically J quasi-convexfunctions viaRiemannLiouvillefractionalintegral. 7 ] A 1. Introduction C . In this section we will present definitions and some results used in this paper. h t A function f :I ⊆R→R is said to be a convex function if a m f(λx+(1−λ)y)≤λf(x)+(1−λ)f(y) [ holds for all x,y ∈I and λ∈[0,1]. 1 The notion of quasi-convexfunctions generalizesthe notion of convexfunctions. v More precisely, a function f :[u,v]→R is said quasi-convex on [u,v] if 6 f(λx+(1−λ)y)≤sup{f(x),f(y)}, 4 9 for any x,y ∈ [u,v] and λ ∈ [0,1]. Clearly, any convex function is a quasi-convex 2 function. Furthermore, there exist quasi-convex functions which are not convex . 1 (see [4]). 0 Following inequalities are well known in the literature as Hermite-Hadamard 4 inequality, Ostrowskiinequality and Simpson inequality respectively: 1 : v Theorem 1. Let f : I ⊆ R→R be a convex function defined on the interval I of i real numbers and u,v ∈I with u<v. The following double inequality holds X v r u+v 1 f(u)+f(v) a (1.1) f ≤ f(x)dx≤ . 2 v−u 2 (cid:18) (cid:19) Z u Theorem 2. Let f : I ⊆ R→R be a mapping differentiable in I◦, the interior of I, and let u,v ∈I◦ with u<v. If |f′(x)|≤M for all x∈[u,v], then the following inequality holds v 1 M (x−u)2+(v−x)2 f(x)− f(t)dt ≤ (cid:12) v−u (cid:12) v−u 2 (cid:12) Z (cid:12) " # (cid:12) u (cid:12) (cid:12) (cid:12) for all x∈[u,(cid:12)v]. (cid:12) (cid:12) (cid:12) 2000 Mathematics Subject Classification. 26A33,26A51,26D15. Keywordsandphrases. Hermite–Hadamardinequality,Riemann–Liouvillefractionalintegral, Ostrowskiinequality,Simpsontypeinequalities,harmonicallyquasi-convexfunction. 1 2 I˙MDATI˙S¸CAN Theorem 3. Let f :[u,v]→R be a four times continuously differentiable mapping on (u,v) and f(4) = sup f(4)(x) <∞. Then the following inequality holds: ∞ x∈(u,v) (cid:13) (cid:13) (cid:12) (cid:12) (cid:13) (cid:13) (cid:12) (cid:12) v 1 f(u)+f(v) u+v 1 1 +2f − f(x)dx ≤ f(4) (v−u)4. (cid:12)3 2 2 v−u (cid:12) 2880 ∞ (cid:12)(cid:12) (cid:20) (cid:18) (cid:19)(cid:21) Zu (cid:12)(cid:12) (cid:13)(cid:13) (cid:13)(cid:13) (cid:12) (cid:12) (cid:13) (cid:13) (cid:12)In [5], Iscan defined harmonically convex functio(cid:12)ns and gave some Hermite- (cid:12) (cid:12) Hadamard type inequalities for this class of functions Definition 1. Let I ⊂ R\{0} be a real interval. A function f : I → R is said to be harmonically convex, if xy (1.2) f ≤λf(y)+(1−λ)f(x) λx+(1−λ)y (cid:18) (cid:19) for all x,y ∈ I and λ ∈ [0,1]. If the inequality in (1.2) is reversed, then f is said to be harmonically concave. In[17],Zhangetal. definedtheharmonicallyquasi-convexfunctionandsupplied severalproperties of this kind of functions. Definition 2. A function f : I ⊆ (0,∞) → [0,∞) is said to be harmonically convex, if xy f ≤sup{f(x),f(y)} λx+(1−λ)y (cid:18) (cid:19) for all x,y ∈I and λ∈[0,1]. We wouldliketopointoutthatanyharmonicallyconvexfunctiononI ⊆(0,∞) is a harmonically quasi-convex function, but not conversely. For example, the function 1, x∈(0,1]; f(x)= ((x−2)2, x∈[1,4]. is harmonically quasi-convex on (0,4], but it is not harmonically convex on (0,4]. Let us recall the following special functions: (1) The Beta function: 1 β(x,y)= Γ(x)Γ(y) = tx−1(1−t)y−1dt, x,y >0, Γ(x+y) Z 0 (2) The hypergeometric function: 1 F (a,b;c;z)= 1 tb−1(1−t)c−b−1(1−zt)−adt, c>b>0, |z|<1 (see [11]). 2 1 β(b,c−b) Z 0 We give some necessarydefinitions andmathematicalpreliminaries of fractional calculus theory which are used throughout this paper. Definition 3. Let f ∈ L[u,v]. The Riemann-Liouville integrals Jα f and Jα f u+ v− of oder α>0 with u≥0 are defined by ON GENERALIZATION OF DIFFERENT TYPE INEQUALITIES 3 b Jα f(b)= 1 (b−t)α−1f(t)dt, b>u u+ Γ(α) Z u and v Jα f(a)= 1 (t−a)α−1f(t)dt, a<v v− Γ(α) Z a ∞ respectively, where Γ(α) is the Gamma function defined by Γ(α) = e−ttα−1dt Z 0 and J0 f(x)=J0 f(x)=f(x). u+ v− In the case of α = 1, the fractional integral reduces to the classical integral. In recent years, many athors have studied errors estimations for Hermite-Hadamard, Ostrowski and Simpson inequalities; for refinements, counterparts, generalization see [1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16]. In [6], Iscan gave the following new identity for differentiable functions and ob- tainedsomenew generalintegralinequalities forharmonicallyconvexfunctions via fractional integrals. Lemma 1. Let f : I ⊆(0,∞)→R be a differentiable function on I◦ and a,b∈I with a<b. If f′ ∈L[a,b] then for all x∈[a,b] , λ∈[0,1] and α>0 we have: 1 (x−a)α+1 tα−λ ax ′ I (x,λ,α,a,b)= f dt f,g (ax)α−1 A2(a,x) A (a,x) Z t (cid:18) t (cid:19) 0 1 (b−x)α+1 tα−λ bx ′ − f dt, (bx)α−1 A2(b,x) A (b,x) Z t (cid:18) t (cid:19) 0 where A (u,x)=tu+(1−t)x and t (1.3)I (x,λ,α,a,b) f,g α α α α x−a b−x x−a b−x = (1−λ) + f(x)+λ f(a)+ f(b) ax bx ax bx (cid:20)(cid:18) (cid:19) (cid:18) (cid:19) (cid:21) (cid:20)(cid:18) (cid:19) (cid:18) (cid:19) (cid:21) −Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) , g(u)=1/u. 1/x+ 1/x− h i In this paper, by using of Lemma 1, we obtained a generalizationof Hadamard, Ostrowski and Simpson type inequalities for harmonically quasi-convex functions via Riemann Liouville fractional integral. 2. Main Results Let f : I ⊆ (0,∞) → R be a differentiable function on I◦, the interior of I, throughout this section we will take the notation I (x,λ,α,a,b) as in (1.3), f,g where a,b ∈I with a < b, x ∈ [a,b] , λ∈ [0,1], g(u)= 1/u, α> 0 and Γ is Euler Gammafunction. Inordertoproveourmainresultsweneedthefollowingidentity. 4 I˙MDATI˙S¸CAN Theorem 4. Let f : I ⊆ (0,∞) → R be a differentiable function on I◦ such that f′ ∈ L[a,b], where a,b ∈ I◦ with a < b. If |f′|q is harmonically quasi-convex on [a,b] for some fixed q ≥ 1, then for x ∈ [a,b], λ ∈ [0,1] and α > 0 the following inequality holds |I (x,λ,α,a,b)|≤C1−1/q(α,λ) f,g 1 (2.1) × (x−a)α+1 sup |f′(x)|q,|f′(a)|q 1/qC1/q α,λ,q, a (ax)α−1x2q 2 x ( (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) +(b−x)α+1 sup |f′(x)|q,|f′(a)|q 1/qC1/q α,λ,q,x , (bx)α−1b2q 3 b ) (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) where 2αλ1+α1 +1 C (α,λ)= −λ, 1 α+1 a C α,λ,q, 2 x 1(cid:16) (cid:17) a a = . F (2q;α+1;α+2,1− )−λ. F (2q;1;2,1− ) 2 1 2 1 α+1 x x +2λ1+α1. 2F1(2q;1;2,λ1/α 1− a )− 1 .2F1(2q;α+1;α+2,λ1/α 1− a ) , x α+1 x (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) x C α,λ,q, 3 b 1(cid:16) (cid:17) x x = . F (2q;1;α+2,1− )−λ. F (2q;1;2,1− ) 2 1 2 1 α+1 b b +2λ1+α1. 2F1(2q;1;2,λ1/α 1− x )− 1 .2F1(2q;1;α+2,λ1/α 1− x ) . b α+1 b (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) Proof. Since|f′|q isharmonicallyquasi-convexon[a,b],fromLemma1,propertyof the modulus and using the power-mean inequality we have 1 (x−a)α+1 |tα−λ| ax ′ |I (x,λ,α,a,b)|≤ f dt f,g (ax)α−1 A2(a,x) A (a,x) Z t (cid:12) (cid:18) t (cid:19)(cid:12) 0 (cid:12) (cid:12) 1 (cid:12) (cid:12) (b−x)α+1 |tα−λ| bx (cid:12) (cid:12) ′ + f dt (bx)α−1 A2(b,x) A (b,x) Z t (cid:12) (cid:18) t (cid:19)(cid:12) 0 (cid:12) (cid:12) (x−a)α+1 1 (cid:12)(cid:12) 1−1q 1 |t(cid:12)(cid:12)α−λ| ax q q1 ≤ |tα−λ|dt f′ dt (ax)α−1 Z  Z A2tq(a,x)(cid:12) (cid:18)At(a,x)(cid:19)(cid:12)  0 0 (cid:12) (cid:12) (b−x)α+1 1  1−q1 1 |tα−λ|(cid:12)(cid:12) bx (cid:12)(cid:12) q  q1 + |tα−λ|dt f′ dt (bx)α−1 Z  Z A2tq(b,x)(cid:12) (cid:18)At(b,x)(cid:19)(cid:12)  0 0 (cid:12) (cid:12)    (cid:12) (cid:12)  (cid:12) (cid:12) ON GENERALIZATION OF DIFFERENT TYPE INEQUALITIES 5 1 1/q 1−1/q (x−a)α+1 ′ q ′ q 1/q |tα−λ| ≤ C (α,λ) sup |f (x)| ,|f (a)| dt 1  (ax)α−1  A2q(a,x)   (cid:2) (cid:8) (cid:9)(cid:3) Z0 t   (b−x)α+1 ′ q ′ q 1/q 1 |tα−λ| 1/q (2.2) + sup |f (x)| ,|f (a)| dt (bx)α−1  A2q(a,x)   (cid:2) (cid:8) (cid:9)(cid:3) Z0 t    where by simple computation we obtain  1 C (α,λ) = |tα−λ|dt 1 Z 0 2αλ1+α1 +1 (2.3) = −λ, α+1 1 |tα−λ| (2.4) dt A2q(a,x) Z t 0 1 a a = x−2q . F (2q;α+1;α+2,1− )−λ. F (2q;1;2,1− ) 2 1 2 1 α+1 x x (cid:26) +2λ1+α1. 2F1(2q;1;2,λ1/α 1− a )− 1 .2F1(2q;α+1;α+2,λ1/α 1− a ) , x α+1 x (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) and 1 |tα−λ| (2.5) dt A2q(b,x) Z t 0 1 x x = b−2q . F (2q;1;α+2,1− )−λ. F (2q;1;2,1− ) 2 1 2 1 α+1 b b (cid:26) +2λ1+α1. 2F1(2q;1;2,λ1/α 1− x )− 1 .2F1(2q;1;α+2,λ1/α 1− x ) , b α+1 b (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) Hence, If we use (2.3), (2.4) and (2.5) in (2.2), we obtain the desired result. This completes the proof. (cid:3) Corollary 1. Under the assumptions of Theorem 4 with q =1, the inequality (2.1) reduced to the following inequality |I (x,λ,α,a,b)| f,g (x−a)α+1 a ′ ′ ≤ [sup{|f (x)|,|f (a)|}]C α,λ,1, (ax)α−1x2 2 x ( (cid:16) (cid:17) (b−x)α+1 x ′ ′ 1/q + [sup{|f (x)|,|f (a)|}] C α,λ,1, , (bx)α−1b2 3 b ) (cid:16) (cid:17) 6 I˙MDATI˙S¸CAN Corollary 2. Under theassumptions of Theorem 4withα=1, theinequality(2.1) reduced to the following inequality ab |I (x,λ,α,a,b)| f,g b−a (cid:18) (cid:19) b b(x−a)f(a)+a(b−x)f(b) ab f(u) = (1−λ)f(x)+λ − du (cid:12) x(b−a) b−a u2 (cid:12) (cid:12) (cid:20) (cid:21) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12) ab 2λ2−2λ+1 1−1q (x−a)2 sup |f′(x)|q,|f′(a)|q 1(cid:12)(cid:12)(cid:12)/qC1/q 1,λ,q, a b−a 2 x2q 2 x (cid:18) (cid:19)(cid:18) (cid:19) ( (cid:2) (cid:8) (cid:9)(cid:3) (cid:16) (cid:17) +(b−x)2 sup |f′(x)|q,|f′(a)|q 1/qC1/q 1,λ,q,x , b2q 3 b ) (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) specially for x=H =2ab/(a+b), we get f(a)+f(b) ab b f(u) b−a 2λ2−2λ+1 1−q1 (1−λ)f(H)+λ − du ≤ (cid:12) 2 b−a u2 (cid:12) 4ab 2 (cid:12) (cid:18) (cid:19) Z (cid:12) (cid:18) (cid:19) (cid:12) a (cid:12) ×(cid:12)(cid:12)(cid:12) aH2H2q2C21/q 1,λ,q,a2+bb sup |f′(H)|q,|f′(a)(cid:12)(cid:12)(cid:12)|q 1q (cid:26) (cid:18) (cid:19) + b2H2C1/q 1,λ,q, 2a s(cid:0)up |(cid:8)f′(H)|q,|f′(b)|q (cid:9)q1(cid:1) . b2q 3 a+b (cid:18) (cid:19) (cid:27) (cid:0) (cid:8) (cid:9)(cid:1) Corollary 3. In Theorem 4, (1) If we take x = H = 2ab/(a+b), λ = 1, then we get the following Simpson 3 type inequality for fractional integrals α 1 ab [f(a)+4f(H)+f(b)]− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) 6 b−a 1/H+ 1/H− ≤ (cid:12)(cid:12)(cid:12)(cid:12)b4−abaC11−1/q α,31 aH2H2q2(cid:18)sup (cid:19)|f′(H)|q,|f′(a)|qh 1/qC21/q α,31,q,Ha i(cid:12)(cid:12)(cid:12)(cid:12) (cid:18) (cid:19)(cid:26) (cid:18) (cid:19) +b2H2 sup |f′(H)|q,|f′(a(cid:2))|q (cid:8)1/qC1/q α,1,q,H(cid:9)(cid:3) , b2q 3 3 b (cid:18) (cid:19)(cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get 1 ab b f(u) b−a 5 1−q1 [f(a)+4f(H)+f(b)]− du ≤ (cid:12)6 b−a u2 (cid:12) 4ab 18 (cid:12) Z (cid:12) (cid:18) (cid:19) (cid:12) a (cid:12) ×(cid:12)(cid:12)(cid:12) aH2H2q2C21/q 1,13,q,a2+bb [sup{|f′(H)|(cid:12)(cid:12)(cid:12),|f′(a)|}]q1 (cid:26) (cid:18) (cid:19) +b2H2C1/q 1,1,q, 2a sup |f′(H)|q,|f′(b)|q q1 . b2q 3 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) ON GENERALIZATION OF DIFFERENT TYPE INEQUALITIES 7 (2) If we take x=H =2ab/(a+b), λ=0, then we get the following midpoint type inequality for fractional integrals ab α f(H)− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) b−a 1/H+ 1/H− (cid:12) (cid:18) (cid:19) (cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 a2H2C1/q αh,0,q,a+b sup |f′(H)|q,|f′(a)|q q1i(cid:12)(cid:12)(cid:12) 4ab α+1 H2q 2 2b (cid:18) (cid:19) (cid:26) (cid:18) (cid:19) +b2H2C1/q α,0,q, 2a sup |f′(H)|q,|f′((cid:2)b)|q (cid:8)q1 , (cid:9)(cid:3) b2q 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get b ab f(u) f(H)− du (cid:12) b−a u2 (cid:12) (cid:12) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 a2H2C1(cid:12)(cid:12)(cid:12)/q 1,0,q,a+b sup |f′(H)|q,|f′(a)|q q1 4ab 2 H2q 2 2b (cid:18) (cid:19) (cid:26) (cid:18) (cid:19) +b2H2C1/q 1,0,q, 2a sup |f′(H)|q,(cid:2)|f′((cid:8)b)|q q1 . (cid:9)(cid:3) b2q 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) (3) If we take x=H =2ab/(a+b), λ=1, then we get the following trapezoid type inequality for fractional integrals α f(a)+f(b) ab − 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) 2 b−a 1/H+ 1/H− ≤ (cid:12)(cid:12)(cid:12)(cid:12)b−a α 1(cid:18)−q1 a2(cid:19)H2C1/q α,1,q,ha+b sup |f′(H)|q,|f′(a)|q q1 i(cid:12)(cid:12)(cid:12)(cid:12) 4ab α+1 H2q 2 2b (cid:18) (cid:19) (cid:26) (cid:18) (cid:19) +b2H2C1/q α,1,q, 2a sup |f′(H)|q,|f′((cid:2)b)|q (cid:8)q1 , (cid:9)(cid:3) b2q 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get b f(a)+f(b) ab f(u) − du (cid:12) 2 b−a u2 (cid:12) (cid:12) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 a2H2C1/q 1,(cid:12)(cid:12)(cid:12)1,q,a+b sup |f′(H)|q,|f′(a)|q q1 4ab 2 H2q 2 2b (cid:18) (cid:19) (cid:26) (cid:18) (cid:19) +b2H2C1/q 1,1,q, 2a sup |f′(H)|q,(cid:2)|f′((cid:8)b)|q q1 . (cid:9)(cid:3) b2q 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) Corollary 4. Let the assumptions of Theorem 4 hold. If |f′(x)|≤M for all x∈ [a,b] and λ = 0, then we get the following Ostrowski type inequality for fractional from the inequality (2.1) integrals x−a α b−x α ab α + f(x)− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) ax bx b−a 1/x+ 1/x− (cid:12)(cid:12)(cid:12)(cid:20)(cid:18) M (cid:19) (x(cid:18)−a)α+(cid:19)1 (cid:21) (cid:18) a (cid:19) (b−x)α+1 h x i(cid:12)(cid:12)(cid:12) ≤ (cid:12) C1/q α,0,q, + C1/q α,0,q, . (cid:12) (α+1)1−1q "(ax)α−1x2q 2 x (bx)α−1b2q 3 b # (cid:16) (cid:17) (cid:16) (cid:17) 8 I˙MDATI˙S¸CAN Theorem 5. Let f : I ⊆ (0,∞) → R be a differentiable function on I◦ such that f′ ∈ L[a,b], where a,b ∈ I◦ with a < b. If |f′|q is harmonically quasi-convex on [a,b] for some fixed q ≥ 1, then for x ∈ [a,b], λ ∈ [0,1] and α > 0 the following inequality holds a (x−a)α+1 ′ q ′ q 1/q (2|.I6) (x,λ,α,a,b)| ≤ C α,λ,1, sup |f (x)| ,|f (a)| f,g 2 x (ax)α−1x2q (cid:16) (cid:17)x (b−x)α+1(cid:2) (cid:8) ′ q ′ (cid:9)q(cid:3) 1/q +C α,λ,1, sup |f (x)| ,|f (b)| 3 b (bx)α−1b2q (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) where C and C are defined as in Theorem 4. 2 3 Proof. Since|f′|q is harmonically quasi-convexon [a,b], from Lemma 1,using prop- erty of the modulus and the power-mean inequality we have |I (x,λ,α,a,b)| f,g (x−a)α+1 1 |tα−λ| 1−1q 1 |tα−λ| ax q q1 ′ ≤ dt f dt (ax)α−1  A2(a,x)   A2(a,x) A (a,x)  Z t Z t (cid:12) (cid:18) t (cid:19)(cid:12) 0 0 (cid:12) (cid:12) (b−x)α+1 1 |tα−λ|  1−1q 1 |tα−λ|(cid:12)(cid:12) bx (cid:12)(cid:12) q  1q ′ + dt f dt (bx)α−1  A2(b,x)   A2(b,x) A (b,x)  Z t Z t (cid:12) (cid:18) t (cid:19)(cid:12) 0 0 (cid:12) (cid:12)    (cid:12) (cid:12)  (cid:12) (cid:12) a (x−a)α+1 ′ q ′ q 1/q ≤ C α,λ,1, sup |f (x)| ,|f (a)| 2 x (ax)α−1x2q (cid:16) (cid:17)x (b−x)α+1(cid:2) (cid:8) ′ q ′ q(cid:9)(cid:3) 1/q +C α,λ,1, sup |f (x)| ,|f (b)| 3 b (bx)α−1b2q (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) which completes the proof. (cid:3) Corollary 5. Under the assumptions of Theorem 5 with q =1, the inequality (2.6) reduced to the following inequality a (x−a)α+1 ′ ′ |I (x,λ,α,a,b)| ≤ C α,λ,1, [sup{|f (x)|,|f (a)|}] f,g 2 x (ax)α−1x2 (cid:16) (cid:17) x (b−x)α+1 ′ ′ +C α,λ,1, [sup{|f (x)|,|f (b)|}] 3 b (bx)α−1b2 (cid:16) (cid:17) ON GENERALIZATION OF DIFFERENT TYPE INEQUALITIES 9 Corollary 6. Under theassumptions of Theorem 5withα=1, theinequality(2.6) reduced to the following inequality ab |I (x,λ,α,a,b)| f,g b−a (cid:18) (cid:19) b b(x−a)f(a)+a(b−x)f(b) ab f(u) = (1−λ)f(x)+λ − du (cid:12) x(b−a) b−a u2 (cid:12) (cid:12) (cid:20) (cid:21) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12) ab (x−a)2 sup |f′(x)|q,|f′(a)|q 1/qC 1,λ,1, a (cid:12)(cid:12)(cid:12) b−a x2 2 x (cid:18) (cid:19)( (cid:2) (cid:8) (cid:9)(cid:3) (cid:16) (cid:17) (b−x)2 ′ q ′ q 1/q x + sup |f (x)| ,|f (a)| C 1,λ,1, , b2 3 b ) (cid:16) (cid:17) (cid:2) (cid:8) (cid:9)(cid:3) specially for x=H =2ab/(a+b), we get b f(a)+f(b) ab f(u) b−a (1−λ)f(H)+λ − du ≤ (cid:12) 2 b−a u2 (cid:12) 4ab (cid:12) (cid:18) (cid:19) Z (cid:12) (cid:12) a (cid:12) (cid:12)(cid:12)(cid:12)× a2C2 1,λ,1,a+b sup |f′(H)|q,|f′(a)|q 1q(cid:12)(cid:12)(cid:12) 2b (cid:26) (cid:18) (cid:19) +H2C 1,λ,1, 2a (cid:0)sup (cid:8)|f′(H)|q,|f′(b)|q (cid:9)(cid:1)q1 . 3 a+b (cid:18) (cid:19) (cid:27) (cid:0) (cid:8) (cid:9)(cid:1) Corollary 7. In Theorem 5, (1) If we take x = H = 2ab/(a+b), λ = 1, then we get the following Simpson 3 type inequality for fractional integrals α 1 ab [f(a)+4f(H)+f(b)]− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) 6 b−a 1/H+ 1/H− ≤ (cid:12)(cid:12)(cid:12)(cid:12)b−a a2 sup |f′(H)|q,|f(cid:18)′(a)|q (cid:19)1/qC2 α,1,1, ah i(cid:12)(cid:12)(cid:12)(cid:12) 4ab 3 x (cid:26) (cid:18) (cid:19) +H2 sup(cid:2)|f′((cid:8)H)|q,|f′(a)|q 1/q(cid:9)C(cid:3) α,1,1,x , 3 3 b (cid:18) (cid:19)(cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get b 1 ab f(u) b−a [f(a)+4f(H)+f(b)]− du ≤ (cid:12)6 b−a u2 (cid:12) 4ab (cid:12) Z (cid:12) (cid:12) a (cid:12) (cid:12)(cid:12)(cid:12)× a2C2 1,1,1,a+b [sup{|f′(H)|,|f′((cid:12)(cid:12)(cid:12)a)|}]1q 3 2b (cid:26) (cid:18) (cid:19) +H2C 1,1,1, 2a sup |f′(H)|q,|f′(b)|q 1q . 3 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) 10 I˙MDATI˙S¸CAN (2) If we take x=H =2ab/(a+b), λ=0, then we get the following midpoint type inequality for fractional integrals α ab f(H)− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) b−a 1/H+ 1/H− ≤ (cid:12)(cid:12)(cid:12)(cid:12)b−a a2(cid:18)C2 α,(cid:19)0,1,a+b suph|f′(H)|q,|f′(a)|q q1 i(cid:12)(cid:12)(cid:12)(cid:12) 4ab 2b (cid:26) (cid:18) (cid:19) +H2C α,0,1, 2a sup(cid:2)|f′((cid:8)H)|q,|f′(b)|q q1 (cid:9),(cid:3) 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get b ab f(u) f(H)− du (cid:12) b−a u2 (cid:12) (cid:12) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12)b−a 1 1−q1 a2H2C1(cid:12)(cid:12)(cid:12)/q 1,0,q,a+b sup f′ 2ab q,|f′(a)|q q1 4ab 2 H2q 2 2b a+b (cid:18) (cid:19) ( (cid:18) (cid:19)(cid:20) (cid:26)(cid:12) (cid:18) (cid:19)(cid:12) (cid:27)(cid:21) (cid:12) (cid:12) +b2H2C1/q 1,0,q, 2a sup f′ 2ab q,(cid:12)(cid:12)|f′(b)|q q1(cid:12)(cid:12) . b2q 3 a+b a+b (cid:18) (cid:19)(cid:20) (cid:26)(cid:12) (cid:18) (cid:19)(cid:12) (cid:27)(cid:21) ) (cid:12) (cid:12) (3) If we take x=H =2ab/(a+b), λ=1(cid:12), then we ge(cid:12)t the following trapezoid type (cid:12) (cid:12) inequality for fractional integrals α f(a)+f(b) ab − 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) 2 b−a 1/H+ 1/H− ≤ (cid:12)(cid:12)(cid:12)(cid:12)b−a a2C2 α(cid:18),1,1,a(cid:19)+b sup |f′(Hh)|q,|f′(a)|q q1 i(cid:12)(cid:12)(cid:12)(cid:12) 4ab 2b (cid:26) (cid:18) (cid:19) +H2C α,1,1, 2a sup(cid:2)|f′((cid:8)H)|q,|f′(b)|q q1 (cid:9),(cid:3) 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) specially for α=1, we get b f(a)+f(b) ab f(u) − du (cid:12) 2 b−a u2 (cid:12) (cid:12) Z (cid:12) (cid:12) a (cid:12) ≤ (cid:12)(cid:12)(cid:12)b4−aba a2C21/q 1,1,1,a2+bb (cid:12)(cid:12)(cid:12)sup |f′(H)|q,|f′(a)|q q1 (cid:26) (cid:18) (cid:19) +H2C1/q 1,1,1, 2a sup(cid:2)|f′((cid:8)H)|q,|f′(b)|q q1 (cid:9).(cid:3) 3 a+b (cid:18) (cid:19) (cid:27) (cid:2) (cid:8) (cid:9)(cid:3) Corollary 8. Let the assumptions of Theorem 5 hold. If |f′(x)|≤M for all x∈ [a,b] and λ = 0, then we get the following Ostrowski type inequality for fractional from the inequality (2.6) integrals x−a α b−x α ab α + f(x)− 2α−1Γ(α+1) Jα (f ◦g)(1/a)+Jα (f ◦g)(1/b) ax bx b−a 1/x+ 1/x− (cid:12)(cid:12)(cid:12)(cid:20)(cid:18) (x−a(cid:19))α+1(cid:18) (cid:19) (cid:21)a (b(cid:18)−x)α+(cid:19)1 x h i(cid:12)(cid:12)(cid:12) ≤ M(cid:12) C α,0,1, + C α,0,1, . (cid:12) (ax)α−1x2 2 x (bx)α−1b2 3 b " # (cid:16) (cid:17) (cid:16) (cid:17)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.