ebook img

On finite simple groups of essential dimension 3 PDF

0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On finite simple groups of essential dimension 3

ON FINITE SIMPLE GROUPS OF ESSENTIAL DIMENSION 3 ARNAUDBEAUVILLE 1 1 0 ABSTRACT. Weshowthattheonlyfinitesimplegroupsofessentialdimension3(over 2 C)areA6 andpossiblyPSL2(F11).Thisisaneasyconsequenceoftheclassification by n Prokhorovofrationallyconnectedthreefoldswithanactionofasimplegroup. a J 8 1 INTRODUCTION ] G LetGbeafinitegroup,andX acomplexprojectivevarietywithafaithfulactionofG. A WewillsaythatX isalinearizableifthereexistsacomplexrepresentationV ofGanda rationaldominantG-equivariantmapV 99KX (suchamapiscalledacompressionofV). . h Theessential dimensioned(G)of G(overC)isthe minimaldimension of alllinearizable t a G-varieties.Wehavetoreferto[BR]forthemotivationbehindthisdefinition;inavery m informalway,ed(G)istheminimumnumberofparametersneededtodefineallGalois [ extensionsL/K withGaloisgroupGandK ⊃C. 2 Thegroupsofessentialdimension1arethecyclicgroupsandthediedralgroupD , n v 2 nodd[BR].Thegroupsofessentialdimension2areclassifiedin[D2];thelistisalready 7 large,and such classification becomesprobablyintractable in higher dimension. How- 3 everthesimple(finite)groupsinthelistareonlyA andPSL (F ).Inthisnotewetryto 1 5 2 7 . goonestepfurther: 1 0 Proposition. Thesimplegroupsofessentialdimension3areA andpossiblyPSL (F ). 1 6 2 11 1 The result is an easy consequence of the remarkable paper of Prokhorov [P], who : v classifiesallrationallyconnectedthreefoldsadmittingtheactionofasimplegroup.We i X canruleoutmostofthegroupsappearingin[P]thankstoasimplecriterion[RY]:ifaG- r varietyXislinearizable,anyabeliansubgroupofGmustfixapointofX.Unfortunately a this criterion does not applyto PSL (F ), whose only abeliansubgroups are cyclic or 2 11 isomorphicto(Z/2)2. 1. PROKHOROV’S LIST Let G be a finite simple group with ed(G) = 3. By definition there exists a lineariz- ableprojectiveG-threefoldX.ThisimpliesinparticularthatX isrationallyconnected. Suchpairs(G,X)havebeenclassifiedin[P]:uptoconjugation, we havethe following possibilities: Date:January19,2011. 1 2 ARNAUDBEAUVILLE (1) G=SL (F )actingonaFanothreefoldX ⊂P8; 2 8 (2) G=A ,A ,A ,PSL (F ),PSL (F ),orPSp (F ). 5 6 7 2 7 2 11 4 3 ThegroupsA ,A ,A haveessentialdimension2,3and4respectively,andPSL (F ) 5 6 7 2 7 hasessentialdimension2[D1].WearenotabletosettlethecaseG=PSL (F )(see§3). 2 11 AsforPSp (F ),wehave: 4 3 Proposition1. TheessentialdimensionofPSp(4,F )is4. 3 Proof : The group Sp(4,F ) has a linear representation on the space W of functions on 3 F2, the Weil representation, for which we refer to [AR], Appendix I. This representation 3 splitsasW = W+ ⊕W−,thespacesofevenandoddfunctions; wehavedimW+ = 5, dimW− = 4. The central element (−I) of Sp(4,F ) acts on W by (−I)F (x) = F(−x), 3 henceitactstriviallyonW+,andas−IdonW−.Thuswegetafaithfulrepresentation ofPSp(4,F )onW+,withacompressiontoP(W+)∼=P4,henceed(PSp(4,F ))≤4. 3 3 To prove that we have equality, we observe1 that PSp(4,F ) contains a subgroup 3 isomorphic to (Z/2)4. One way to see this is to use the isomorphism PSp(4,F ) ∼= 3 SO+(5,F ): the group of diagonal matrices with entries ±1 and determinant 1 is con- 3 tainedinSO+(5,F ),andisomorphicto(Z/2)4.By[BR]wehave 3 ed(PSp(4,F ))≥ed((Z/2)4)=4. 3 2. THE GROUPSL2(F8) Itremainstoprovethatthepair(SL (F ),X)mentionedin(1)isnotlinearizable.To 2 8 dothiswewillusethefollowingcriterion([RY],Appendix): Lemma1. If(G,X)islinearizable,everyabeliansubgroupofGhasafixedpointinX. Proposition2. TheessentialdimensionofSL (F )is≥4. 2 8 ThegroupSL (F )hasarepresentationofdimension7,henceitsessentialdimension 2 8 is≤6 –wedonotknowitsprecisevalue. Proof : The group SL (F ) acts on a rational Fano threefold X ⊂ P8 in the following 2 8 way[P].LetU beanirreducible9-dimensionalrepresentationofSL (F );thereexistsa 2 8 non-degenerate invariant quadratic form q on U, unique up to a scalar. Then SL (F ) 2 8 acts on the orthogonal Grassmannian G (4,U) of 4-dimensional isotropic subspaces iso of U. This Grassmannian admits a O(q)-equivariant embedding into P15, given by the half-spinor representation [M]. The threefold X is the intersection of G (4,U) with a iso subspaceP8 ⊂P15invariantunderSL (F ). 2 8 I a LetN ⊂ SL (F )bethesubgroupofmatrices ,a ∈ F .WewillshowthatN 2 8 8 0 I! hasnofixedpointinG (4,U),andthereforeinX. iso 1IamindebtedtoA.Duncanforthisobservation. 3 Letχ bethecharacteroftherepresentationU.Wehaveχ (n) = 1forn ∈ N,n 6= 1 U U (see for instance [C], 2.7). It follows that U restricted to N is the sum of the regular representationandthetrivialone;inotherwords,asaN-modulewehave U =C2⊕ C , 1 λ λX∈Nˆ λ6=1 whereC istheone-dimensionalrepresentationassociatedtothecharacterλ.Thesub- λ spacesC andC mustbeorthogonalforα6=β;sinceqisnon-degenerate,itsrestriction α β toeachC (λ6=1)andtoC2mustbenon-degenerate. λ 1 Now any vector subspace L ⊂ U fixed by N must be the sum of some of the C , λ for λ 6= 1, and of some subspace of C2; this implies that L cannot be isotropic as soon 1 as dimL ≥ 2. Hence N has no fixed point on G (4,U), and X is not linearizable by iso Lemma1. 3. ABOUTPSL2(F11) TheWeilrepresentationW−ofSL (F )factorsthroughPSL (F ),henceprovidesa 2 11 2 11 5-dimensional representationof the latter group; thus its essential dimension is 3 or 4. Accordingto[P]therearetworationallyconnectedthreefoldswithanactionofPSL (F ), 2 11 theKleincubicXk ⊂ P4 givenby X2X = 0andaFanothreefoldXa ⊂ P9 of i∈Z/5 i i+1 degree14,birationaltoXk.The groupPSL (F )hasorder660 = 22.3.5.11;itsabelian P 2 11 subgroupsarecyclic,exceptthe2-Sylowsubgroupswhichareisomorphic to(Z/2)2. A finiteorderautomorphismofarationallyconnectedvarietyhasalwaysafixedpoint(for instance by the holomorphic Lefschetzformula); one checkseasily that a 2-Sylowsub- group of PSL (F ) has a fixed point on both Xk and Xa. So lemma 1 does not apply, 2 11 andanotherapproachisneeded. REFERENCES [AR] A.Adler,S.Ramanan:Moduliofabelianvarieties.Lect.NotesinMath.1644,Springer-Verlag,Berlin (1996). [BR] J.Buhler,Z.Reichstein:Ontheessentialdimensionofafinitegroup.CompositioMath.106(1997),no.2, 159–179. [C] M.Collins:Representationsandcharactersoffinitegroups.CambridgeUniversityPress(1990). [D1] A.Duncan:EssentialDimensionsofA7andS7.Math.Res.Lett.17(2010),no.2,263–266. [D2] A.Duncan:FiniteGroupsofEssentialDimension2.PreprintarXiv:0912.1644,toappearinComment. Math.Helv. [M] S.Mukai:Curvesandsymmetricspaces,I.Am.J.Math.117(1995),no.6,1627–1644. [P] Y.Prokhorov:SimplefinitesubgroupsoftheCremonagroupofrank3.PreprintarXiv:0908.0678. [RY] Z. Reichstein, B. Youssin:EssentialdimensionsofalgebraicgroupsandaresolutiontheoremforG- varieties.WithanappendixbyJ.Kolla´randE.Szabo´.Canad.J.Math.52(2000),no.5,1018–1056. LABORATOIREJ.-A.DIEUDONNE´,UMR6621DUCNRS,UNIVERSITE´DENICE,PARCVALROSE,F-06108 NICECEDEX2,FRANCE E-mailaddress:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.