NonamemanuscriptNo. (willbeinsertedbytheeditor) On equivalence between maximal and maximum antichains over range-restricted vectors with integral coordinates and the number of such maximal antichains Shen-FuTsai 7 1 Received:2017/01/24 0 2 n Abstract Consider a strict partially ordered set P consisting of all d-dimensional a vectors with integral coordinates restricted in a certain range. We found that any J maximalantichainisalsomaximum,andthemaximumsizehasasimpleexpression 4 intermsoftherange.Propertiesofthenumberofmaximalantichainsgiventherange 2 are explored. We present our proof, the application on other areas, and some open ] questions. O Keywords OrderedSet·(0−1)Matrix·ExtremalProblems C . h t 1 Introduction a m ConsiderastrictpartiallyorderedsetP consistingofalld-dimensionalvectorswith [ integral coordinates restricted in a certain range. The binary relation < is defined 1 as y=(y ,...,y )<x=(x ,...,x ) if y <x for every i∈[1,d]. Without loss of 1 d 1 d i i v generality,supposetherangeisgivenbyanpositiveintegervectorw=(w ,...,w ), 0 1 d meaningthatforeachdimesioni,thecoordinateofeveryvectorinP isrestrictedto 5 7 [1,wi].ThenumberofvectorsinP is(cid:213) di=1wi.AnantichainisasubsetofP such 6 thatforanytwoelementsitcontains,neither<oritsinverse>holds.Amaximalan- 0 tichainisanantichainthatisnotapropersubsetofanyotherantichain.Amaximum . 1 antichainisanantichainthathascardinalityatleastaslargeaseveryotherantichain. 0 7 IfinPwereplacethebinaryrelation<by≤,i.e.y=(y ,...,y )≤x=(x ,...,x ) 1 d 1 d 1 if y ≤x for every i∈[1,d], then the size of maximal antichain varies. For exam- : i i v ple for w=(2,2), {(1,1)} is a maximal antichain, and so is {(1,2),(2,1)}. Their i X sizes differ by 1. On the other hand, under < the only two maximal antichains are {(1,1),(2,1),(1,2)}and{(2,2),(2,1),(1,2)},bothwithcardinality3.Themainre- r a sultofthisworkisthatunder<,everymaximalantichainisalsomaximum,andthe Shen-FuTsai 7319143rdAve.NE,Redmond,WA,USA E-mail:[email protected] 2 Shen-FuTsai maximalsizeis(cid:213) d w −(cid:213) d (w −1). i=1 i i=1 i Becausewediscoveredtheresultwhileworkingonthefieldofmatrixexclusion1, we will present and proveour result using its terminology.The rest of the paper is organized as follows: in Section 2 we introduce matrix exclusion terminology and reviewsomeliteratures.InSection3weprovethatmaximalandmaximumantichains areequivalentinoursetting.WeexplorethenumberofmaximalantichainsinSection 4.InSection5weconcludewithsomeopenquestions. 2 Matrixexclusion A matrixis binaryif eachofits entriesiseither 0or 1.Allthe matricesmentioned inthispaperarebinary.Anentrywithvalue1isanoneentry;otherwiseitisazero entry.AbinarymatrixAcontainsanotherbinarymatrixPifwecanobtainabinary matrix A′ with the same dimensionality as P by deleting 0 or more columnsand 0 or morerowsfromA, and A′ ≥P forall i and j. Thedefinitionextendsnaturally ij ij tod-dimensionalmatrix– ineachdimensionwe delete0ormoreindicesandform amatrixwiththesamedimensionalityasP.AavoidsPifAdoesnotcontainP.We callPtheforbiddenmatrix.InthisworkweonlycareaboutP=I ,the2×...×2 2,d d-dimensionalidentitymatrix. Definition1 Let P be a d-dimensional matrix. ex(w,P) is the maximum number of one entries a w ×w ×...×w matrix can have while avoiding P. ex(n,P)≡ 1 2 d ex((n,n),P),ex(n,P,d)≡ex((n,...,n),P). In contrast to our result, the field of matrix exclusion has mostly focused on asymtotic behavior of ex(w,P), especially in two-dimensional matrices. Bienstock and Gyo¨ni[1] showed ex(n,P)=Q (na (n)) for some trapezoidalpatternswith four oneentries,wherea (n)istheextremelyslowgrowinginverseAckermannfunction. Fu¨redi and Hajnal[2] raised the question of what matrices have extremal functions linear in n? Subsequently an array of works emerged to respond to the quest, for example [3,4,5,6]. There are much fewer works on higher dimensional forbidden matrices.KlazarandMarcus[7]showedthatex(n,P,d)=O(nd−1)foranyk×...×k permutation matrix P. Geneson and Tian[8] extended the result to all d-dimension tuplepermutationmatrices. 3 Equivalencebetweenmaximalandmaximumantichains For notational simplicity we define 2-contain same as contain, except when d =1 amatrix2-containsI aslongasithasmultipleoneentries.Likewise2-avoidand 2,d ex2(w,P)followsnaturallyfrom2-containthusdefined.Theonlyreasontohave2- containdefinedistocovertheweirdbuttrivialedgecased=1inthemathematical 1 Afterconjecturingandprovingtheresult,theauthorpostthemontheforumofCrowdMathProject[9] underusernameparityhome,astheauthorwasoriginallyworkingonamatrixexclusiongameproposed ontheforumbymoderatorJesseGeneson. TitleSuppressedDuetoExcessiveLength 3 inductionusedbytheproof. Theorem1 ex2(w,I )=(cid:213) d w −(cid:213) d (w −1). Moreover, every maximal w × 2,d i=1 i i=1 i 1 ...×w matrix that 2-avoids I has exactly ex2(w,I ) one entries. A maximal d 2,d 2,d matrixisonesuchthatflippinganyzerotoonemakesit2-containI . 2,d Notethat(cid:213) d w −(cid:213) d (w −1)isthenumberofentrieswithatleastonecoordi- i=1 i i=1 i natebeing1,andalsothenumberofentrieswithatleastoneindexisuchthatx =w. i i TheresulthasimplicationonamatrixexclusiongameproposedbyGeneson[9]. Playedbym>1playersnumberedfrom0tom−1,thegamestartswithamatrixA filledwithzeroentries.TheplayerstaketurntoflipazeroinAtoone,andaplayer losesthegameifhisorhermovemakesAcontainapredefinedbinarymatrixP.Our resultimpliesthatifP=I ,player[((cid:213) d w −(cid:213) d (w −1)) modm]alwaysloses 2,d i=1 i i=1 i nomatterwhattheplayers’strategiesare. Proof Thetheoremistrivialwhend=1orw =1forsomeiin[1,d]. i Definition2 A d-row x=(x ,...,x ) of a d-dimensionalmatrix M is the set of 1 d−1 entrieswiththefirstd−1coordinatesbeingx ,...,x .Thereare(cid:213) d−1w d-rows, 1 d−1 i=1 i eachwithw entries. d Definition3 The x -th d-cross section is the set of entries with the last coordinate d beingx .Therearew d-crosssections,eachwith(cid:213) d−1w entries. d d i=1 i LetMbeamaximalw ×...×w matrixthat2-avoidsI .Wewillbeprimarily 1 d 2,d dealingwiththed-rowsofMthroughouttheproof. Definition4 Ad-rowx=(x ,...,x )isaancestorofd-rowy=(y ,...,y )if 1 d−1 1 d−1 x<y. We say y is a descendantof x. A(x) and D(x) are the sets of ancestors and descendantsofx,respectively. Ancestoranddescendantrelationsaretransitive,andthegraphsofthesetwore- lationsaredirectedacyclic.DefineM(x,x )=M . d x1,...,xd For a d-row x define l(x) and h(x) as the minimum and maximum y such that M(x,y)=1,respectively.Theyarewelldefinedifthereisanoneentryinx.Foraset of d-rowsZ, l(Z) and h(Z) are the smallest and largestd-coordinateof one entries inZ,respectively,withl(0/)=¥ andh(0/)=−¥ .ForZ6=0/,theyarewelldefinedif thereexistsz∈Zsuchthattheyarewelldefinedforz.Wefirstestablishthath(·)and l(·)arewelldefinedeverywhere,i.e.everyd-rowofMhassomeoneentry. Lemma1 Everyd-rowofMhassomeoneentry. 4 Shen-FuTsai Proof Givenad-rowx,ifA(x)isempty,thenM(x,w )=1.IfD(x)isempty,then d M(x,1)=1.Ifneithersetisempty,since(1,1,...,1)∈A(x),l(A(x))iswelldefined, and so is h(D(x)) as (w ,...,w )∈D(x). We then have l(A(x))≥h(D(x)), be- 1 d−1 causeotherwiseM2-containsI .Foranyy∈[h(D(x)),l(A(x))],havingM(x,y)=1 2,d doesnotmakeM2-containI . ⊓⊔ 2,d Lemma2 Givenanyd-rowx,theset{y: M(x,y)=1}isacontiguoussegment. Proof If M(x,y )=M(x,y )=1 for y ≤y , then setting M(x,y)=1 for any y∈ 1 2 1 2 [y ,y ]doesnotmakeM2-containI . ⊓⊔ 1 2 2,d w(M),thenumberofoneentriesinM,isthen(cid:229) h(x)−l(x)+1. x Lemma3 h(x)=min(w ,l(A(x))) (1) d Proof It is trivial when A(x)=0/, so we only discuss when A(x) is not empty. If h(x)>l(z)forsomez∈A(x),thenM 2-containsI .Ontheotherhand,ifh(x)< 2,d l(A(x)),settingM(x,l(A(x)))=1doesnotmakeM2-containI . ⊓⊔ 2,d Lemma4 l(x)=max(1,h(D(x))) (2) Proof It is trivial when D(x)=0/, so we only discuss when D(x) is not empty. If l(x)<h(z)forsomez∈D(x),thenM 2-containsI .Ontheotherhand,ifl(x)> 2,d h(D(x)),settingM(x,h(D(x))=1doesnotmakeM2-containI . ⊓⊔ 2,d Thetwolemmasaboveimplyl(x)≤l(z)ifD(x)⊂D(z)andsimilary,h(x)≤h(z) ifA(z)⊂A(x). We are now going to prove the theorem by mathematical induction on d and w throughthe followinglemmas. Assume the theoremholdsfor 1,2,...,d−1 di- d mensions,andforw=(w ,...,w ,1),(w ,...,w ,2),...,(w ,...,w ,w −1) 1 d−1 1 d−1 1 d−1 d withd dimensions. Lemma5 GivenamatrixM,ifh(·)andl(·)arewelldefinedandsatisfyEquation1 andEquation2foreveryd-rowx,thenM2-avoidsI andismaximal. 2,d Proof Clearly, if there is an one entry in some d-row x with d-coordinate y larger thanmin(w ,l(A(x))),thenyeithergoesbeyondw ,whichisimpossible,ory>l(z) d d forsomez∈A(x),andM 2-containsI .Similarlywe couldnothaveoneentryin 2,d anyd-rowxwithd-coordinatelessthanmax(1,h(D(x))). Ontheotherhand,ifallentriesinsomed-rowxhaved-coordinateissmallerthan min(w ,l(A(x))), setting M(x,min(w ,l(A(x)))) to 1 does not make M 2-contain d d I .Thesimilarargumentworksforl(x). ⊓⊔ 2,d TitleSuppressedDuetoExcessiveLength 5 We know that h(x)=w if A(x)=0/. In fact, if the converse is true things are d mucheasier.Let’sdenote{x: h(x)=w ,A(x)6=0/}byX(M),amoredifficultsetof d d-rowsthatwewilldealwithlater. Definition5 X(M)≡{x: h(x)=w ,A(x)6=0/} d Lemma6 IfX(M)=0/,thenw(M)=(cid:213) d w −(cid:213) d (w −1). i=1 i i=1 i Proof TransformMtoM′ byremovingthew -thd-crosssection.Thensinceh(x)= d w ifandonlyifA(x)=0/,wehave d w(M′)=w(M)−|{x: A(x)=0/}| WeclaimthatM′ isstillmaximal.First,weshowthattherearestilloneentryfor everyd-rowin{x: A(x)=0/}.IfD(x)=0/,thenM′(x,1)=1.IfD(x)6=0/,thensince h(z)<w foreachz∈D(x),l(x)<w inM,meaningM′stillhasoneentryind-row d d x.Sol(·)andh(·)arestillwelldefinedinM′.Second,sincetheonlychangeinh(·) and l(·) is the decrease of h(·) by 1 for {x: A(x)=0/}, Equation1 and Equation2 stillholdinM′,andsobyLemma5,M′ isstillmaximal.Byassumption w(M′)=w w ...w (w −1)−(w −1)(w −1)...(w −1)(w −2) 1 2 d−1 d 1 2 d−1 d A(x)=0/ ifandonlyifatleastoneofthecoordinatesx ,...,x is1.So 1 d−1 |{x: A(x)=0/}|=w w ...w −(w −1)(w −1)...(w −1) 1 2 d−1 1 2 d−1 Addingthemtogether,wehave d d (cid:213) (cid:213) w(M)= w − (w −1) i i i=1 i=1 ⊓⊔ Tocopewithd-rowsinX(M),wewillshowthatwecanalwaysconvertMtoM′ whichstill2-avoidsI maximally,with|X(M′)|<|X(M)|,andw(M)=w(M′).The 2,d firststep,inLemma7,istofindapairofd-rowsxandx′whichwecouldmanipulate justalittlebittoreduce|X(·)|whilekeepingmaximalityandw(·)intact. Wesaythata d-rowx=(x ,...,x )isasemi-ancestorofd-rowif y≤xand 1 d−1 x6=y. Lemma7 IfX(M)6=0/,thenthereared-rowsxandx′,suchthatx=(x′+1,...,x′ + 1 d−1 1),h(x)=w >l(x),andx′ hasnootherdescendantzwithh(z)=w . d d Proof Inthefirststagewefindad-rowxwith h(x)=w >l(x)andA(x)6=0/.We d startfromanarbitraryd-rowx∈X(M).Ifl(x)=w ,thenthereisdescendantzofx d withh(z)=w becausetheonlyotherpossibilityisD(x)=0/,whichleadstol(x)=1, d a contradiction.We set x to z and see if l(x)<w . We repeatthe process untilwe d findaxwithh(x)=w >l(x),whichisguaranteedtohavenon-emptyancestorset d 6 Shen-FuTsai A(x).Suchxexistsbecausethereareonlyfinitenumberofd-rows,andwheneverwe hitonewithoutdescendants,l(x)=1<w .Wethensetx′=(x −1,...,x −1). d 1 d−1 In the second stage, if x′ has no other descendant z with h(z)= w then we d are done. If it does, then since D(z)⊂D(x), l(z)≤l(x)<w , i.e. z qualifies the d requirement for x too. Moreover x is a semi-ancestor of z, so we set x to z and x′ =(x −1,...,x −1). We repeat the process until x′ has no other descendant 1 d−1 z with h(z)=w . This process terminates because in the sequence of x we found, d eachelementisasemi-ancestorofthesubsequentelement,andthissequencecould notbeinfinitelylong. ⊓⊔ Lemma8 If X(M)6=0/, we can convert M to another maximal matrix M′ that 2- avoidsI with|X(M′)|<|X(M)|andw(M′)=w(M). 2,d Proof By Lemma 7, we find d-rows x and x′ such that x=(x′ +1,...,x′ +1), 1 d−1 h(x)=w >l(x), and x′ has no other descendant z with h(z)=w . Construct M′ d d identicaltoMexcepth′(x)=w −1andl′(x′)=w −1.WehaveX(M′)=X(M)−x d d andw(M′)=w(M). WeclaimthatM′isstillamaximalmatrixthat2-avoidsI .Theonlychangewe 2,d make is to decrease h(x) and l(x′) by 1. Clearly Equation 1 is not violated by M′, becausex′isanancestorofx.TheonlypossibilitythatM′violatesEquation2isthat x′ has another descendant z with h(z)=w . But this is impossible because of the d choicewemakewithx′. ⊓⊔ Finally,givenanymatrixMthatmaximally2-avoidsI ,ifnecessarybyapplying 2,d Lemma8afinitenumberoftimeswecanconvertittoanothermaximalM′ withthe samenumberofoneentries,still2-avoidsI ,andwithX(M′)=0/.ThenbyLemma 2,d 6wehavew(M)=w(M′)=(cid:213) d w −(cid:213) d (w −1).Thisconcludesourproof. ⊓⊔ i=1 i i=1 i 4 Numberofmaximalantichains Afterprovingtheequivalenceofsuchmaximalandmaximumantichains,itisnatural toaskhowmanymaximalantichainstherearegivenrangevectorw.Inthissection weexplorethisquantity. Definition6 R(w)issetofmaximalantichainsoverrange-restrictedvectorswithin- tegralcoordinatesboundedbyw.Theorem1saysthateachelementofR(w)hassize (cid:213) d w −(cid:213) d (w −1). i=1 i i=1 i Forwwithlength2,|R(w)|canbeexpressedinbinomialcoefficient. Lemma9 |R([w1,w2])|=(cid:0)w1w+1w−21−2(cid:1) Wefoundapropertyof|R(w)|whenwcontainsa2. Lemma10 |R([w,2])|=R|(w)| TitleSuppressedDuetoExcessiveLength 7 Proof Wewillshowthatthereisbijectivemapping f :R(w)→R([w,2]).Denotethe lengthofvector[w,2]byd.ForamatrixMwithdimensionw ×...×w ×2,de- 1 d−1 fineS asthesetofitsd-rowsxwithM(x,y)=1ifandonlyifi≤y≤ j. i,j ForamatrixM∈R([w,2]),byLemma1andLemma2itsd-rowsarepartitioned intodisjointsetsS for1≤i≤ j≤2.WeclaimthatS ∈R(w).Thisisbecause i,j 1,2 d−1 (cid:213) w(M)=2|S |+|S |+|S |= w +|S | 1,2 1,1 2,2 i 1,2 i=1 Maximizationofw(M) is equivalentto maximizationof|S |, whichbydefini- 1,2 tionleadstoS ∈R(w). 1,2 Thefollowingdescribesaninjective f.ForamatrixN∈R(w),weformamatrix M by setting S =N and S =S =0/. Next, whenever there is a d-row x∈/ N 1,2 1,1 2,2 not in S nor S , we place it in either of them so that M still 2-avoidsI . Note 1,1 2,2 2,d thatx couldnotbeboththeancestoranddescendantofsomed-rowsin N,because otherwise N 2-containsI . Also, x must be either an ancestor or descendantof 2,d−1 some d-row in N, as otherwise N+x is a largerset that 2-avoidsI . Hence we 2,d−1 can always determine whether a d-row x∈/ N should be in S or S . Apparently 1,1 2,2 whenwearedoneMisamaximalmatrixthat2-avoidsI . 2,d f is surjective because we have established that given a matrix M ∈R([w,2]), S ∈R(w). ⊓⊔ 1,2 Acorollaryfollowsimmediately. Corollary1 Ifmax w ≤2,then|R(w)|=min w. i i i i 5 Openquestions Giventhesimpleexpression(cid:213) d w −(cid:213) d (w −1),itisnaturaltoaskifourresult i=1 i i=1 i canbeprovedwithsimplermethod,especiallywithoutthetechnicalandtrickyma- neuvers in Lemma 7 and 8. Also, is there a better and perhaps more intuitive way thanEquation1andEquation2tocharacterizeamaximalmatrixthat2-avoidsI ? 2,d One of the motivations of pursuing an alternative characterization is to derive the expressionmoregeneralthanSection4forthenumberofmaximalmatricesM that 2-avoidsI intermsofrangew=(w ,...,w ). 2,d 1 d References 1. D.Bienstock,E.Gyo¨ri,Anextremalproblemonsparse0-1matrices,SIAMJ.DiscreteMath.4(1991) 17-27. 2. Z.Fu¨redi,P.Hajnal,Davenport-Schinzeltheoryofmatrices,DiscreteMath.103(1992)233-251. 3. R.Fulek, Linearboundonextremal functions ofsomeforbidden patterns in0-1matrices, Discrete Math.309(6)(2009)1736-1739. 8 Shen-FuTsai 4. G.Tardos,On0-1matrices andsmallexcluded submatrices, J.Combin.TheorySer.A111(2005) 266-288. 5. B.Keszegh,Onlinearforbiddenmatrices,J.Combin.TheorySer.A116(1)(2009)232-241. 6. J.T.Geneson,Extremalfunctionsofforbiddendoublepermutationmatrices,J.Combin.TheorySer.A, 116(7)(2009),1235-1244. 7. M.KlazarandA.Marcus,ExtensionsofthelinearboundintheFuredi-Hajnalconjecture,Advancesin AppliedMathematics,38(2)(2007),258-266. 8. JesseT.Geneson and Peter M.Tian, Extremal Functions ofForbidden Multidimensional Matrices, CoRR,abs/1506.03874,(2015). 9. http://www.artofproblemsolving.com/polymath/mitprimes2016/f