ebook img

On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar PDF

1.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar

On-DemandSinglePhotonswithHighExtractionEfficiencyandNear-UnityIndistinguishability fromaResonantlyDrivenQuantumDotinaMicropillar XingDing,1,2,3 YuHe,1,2,3 Z.-C.Duan,1,2,3 NielsGregersen4,M.-C.Chen1,2,3,S.Unsleber5,S.Maier5, Christian Schneider5, Martin Kamp5, Sven Ho¨fling1,5,6, Chao-Yang Lu1,2,3 and Jian-Wei Pan1,2,3 1 ShanghaiBranch,NationalLaboratoryforPhysicalSciencesatMicroscaleandDepartmentofModernPhysics, University of Science and Technology of China, Shanghai, 201315, China 2 CASCenterforExcellenceandSynergeticInnovationCenterinQuantumInformationandQuantumPhysics, University of Science and Technology of China, Hefei, Anhui 230026, China 3 CAS-Alibaba Quantum Computing Laboratory, Shanghai, 201315, China 4 DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Building 343, DK-2800 Kongens Lyngby, Denmark 6 5 TechnischePhysik,PhysikalischesInstita¨tandWilhelmConradRo¨ntgen-CenterforComplexMaterialSystems, 1 Universitat Wu¨rzburg, Am Hubland, D-97074 Wu¨zburg, Germany and 0 6 SUPA,SchoolofPhysicsandAstronomy,UniversityofSt. Andrews,St. AndrewsKY169SS,UnitedKingdom 2 (Dated:submittedtoPRLon29/09/2015,acceptedon01/12/2015,publishedon14/01/2016.) y Scalablephotonicquantumtechnologiesrequireon-demandsingle-photonsourceswithsimultaneouslyhigh a levelsofpurity,indistinguishability,andefficiency. Thesekeyfeatures,however,haveonlybeendemonstrated M separatelyinpreviousexperiments. Here,bys-shellpulsedresonantexcitationofaPurcell-enhancedquantum dot-micropillarsystem,wedeterministicallygenerateresonancefluorescencesinglephotonswhich,atπpulse 3 excitation,haveanextractionefficiencyof66%,single-photonpurityof99.1%,andphotonindistinguishability 1 of98.5%.Suchasingle-photonsourceforthefirsttimecombinesthefeaturesofhighefficiencyandnear-perfect levelsofpurityandindistinguishabilty,andthusopenthewaytomulti-photonexperimentswithsemiconductor ] quantumdots. h p - t Single-photon devices [1] that deterministically emit one broadening of the excited state [15] and uncontrolled emis- n a and only one photon at a time are central resources for scal- sion time jitter from the non-radiative high-level to s-shell u able photonic quantum technologies [2]. In particular, they relaxation [16]. The detrimental effect of the time jitter can q are of considerable interest in Boson sampling [3], an inter- be more severe when using a QD-microcavity system where [ mediatequantumcomputationwhereitisestimatedthatwith the Purcell-reduced radiative lifetime (T1) of the QD, which 2 20-30singlephotonsonecandemonstratecomplextasksthat boundsthesinglephoton’scoherencetime(T )byT (cid:54)2T , 2 2 1 v canbedifficultforclassicalcomputers. Tobeusefulforthese iscomparabletoorsmallerthanthetimejitter[16]. 4 applications,itiscrucialthatthesingle-photonsourcesimul- To overcome these shortcomings, increasing efforts have 8 2 taneously possesses high efficiency, near perfect photon an- been devoted to resonant excitation of QDs [12, 13, 17–19]. 0 tibunchingandindistinguishability—alongsought-aftergoal By s-shell resonant laser excitation on a single QD with pi- 0 inquantumphotonics. cosecond laser pulses, near-background-free resonance fluo- . 1 Self-assembledquantumdots(QDs)[5]havebeenshownto rescence(RF)hasbeenobtainedandallowedtheobservation 0 possesthehighestquantumefficiencyinallsolid-statesingle- of Rabi oscillations [12]. Under π pulse excitation, single 6 photondevicessofar,andthusarepromisingasdeterministic photons have been deterministically generated with a single- 1 single-photonemitters. Tremendousprogresshasbeenmade photonpurityof98.8(2)%andindistinguishabilityof97(2)%. : v inthepastdecadesindemonstrationsofvarioussingle-photon However,theplanarcavitystructureusedinRef.[12]hasal- i X sources [6–13], however, none has allowed a scalable exten- lowedonly∼6%ofthegeneratedsinglephotonscollectedby siontomulti-photonexperiments.Thereasonisthatmostpre- thefirstlens. r a viousexperimentseitherreliedonnon-resonantexcitationof In this Letter, we report the first single-photon source that aQD-microcavitythatdegradedthephotonpurityandindis- combines near perfect single-photon purity, indistinguisha- tinguishability,orusedresonantexcitationofaQDinaplanar bility and high extraction efficiency. By pulsed strict res- cavitythatlimitedtheextractionefficiency. onant excitation of a Purcell-enhanced QD-micropillar sys- In the non-resonant excitation experiments, single-photon tem, at π pulse we obtain pulsed RF single photons with generation efficiencies typically increased asymptotically a count rate of 3.7 million per second on a silicon single- with pump power, and a trade-off between efficiency and photondetector,whichcorrespondstoanextractionefficiency single-photon purity and/or indistinguishability were ob- of ∼66% from GaAs. The RF photons show an antibuching served [6–11]. It has been shown that the recapture of carri- ofg2(0) = 0.009(2)andaraw(corrected)two-photoninter- ersintotheQD-micropillarduetonon-resonantpumpingcan ference visibility of 96.4(3)% (98.5(4)%). Our work opens lead to a significant degradation of the single-photon purity thewaytoscalablemulti-photonquantuminformationexper- [14].Furthermore,thephoton’sindistinguishabilitycanbere- imentswithsolid-statedevices. duced by non-resonant excitation that induces homogeneous Our experiments were performed on an InAs/GaAs self- 2 a b c 2.5μm 700 24 } 600 15 pairs s) 20 p K) e ( 500 }25.5 pairs Temperature ( 1126 ulsed RF lifetim 234000000 RF counts (a.u.)0.11 P 8 100 0.0 0.5 1.0 1.5 2.0 Time delay (ns) 0 896 897 898 899 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Wavelength (nm) QD-cavity detuning (meV) FIG.1:Purcell-enhancedQD-micropillarsystem.(a)AnillustrationofasingleQDembeddedinamicropillar.TheQDisgrownviamolecular beamepitaxy,embeddedinaλ-thickGaAscavityandsandwichedbetween25.5lowerand15upperDBRstacks. Micropillarswith2.5µm diameterweredefinedviaelectronbeamlithography. (b)2Dintensity(inlogscale)plotoftemperature-dependentmicro-photoluminescence spectra.Theexcitationcwlaserisat780nmwavelengthandthepoweris∼3nW.(c)PulsedRFlifetimeasafunctionofQD-cavitydetuning byvaryingthetemperature. Thetime-resolveddataismeasuredusingasuperconductingnanowiresingle-photondetectorswithafasttime resolution of ∼63 ps. The orange curve is a fit using the standard theoretical formula from ref.[20]. The inset shows two examples of time-resolvedRFcountsatQD-cavityresonanceandatfardetuning. assembledQDembeddedinsidea2.5µmdiametermicropil- mogeneouslinewidthisveryclosetothelifetime-limitedline lar cavity which has 25.5 (15) λ/4-thick AlAs/GaAs mirror width of 1.89 GHz. The inhomogeneous (Gaussian) compo- pairs forming the lower (upper) distributed Bragg reflectors nent in the spectrum can becaused by spectral diffusion due [19](seeFig.1a). Thedeviceiscooledinsideacryogen-free tochargefluctuationsinthevicinityoftheQD[21]. bathcryostatwithatemperaturethatcanbefinelytunedfrom Figure2b shows the detected pulsed RF photon counts on 4.2 K to 30K. We first characterize the QD through micro- asiliconsingle-photondetectorasafunctionofincidentfield photoluminescence measurements with 780 nm laser excita- amplitude. WeobserveaRabioscillationwhichisduetoco- tion. Figure1b shows photoluminescence spectra of a single herent control of the QD two-level system [22]. The single- QD as a function of temperature tuning. The photolumines- photon counts reaches the maximum for a π pulse with an cence intensity reaches a plateau at a temperature range of pumping laser power of 24 nW. We note that this is in stark 4.5-10K.Thequalityfactorofthemicropillarcavityismea- contrast with previously experiments with non-resonant ex- suredtobe6124. citation where the generated single-photon counts typically For pulsed resonant excitation, a Ti:Sapphire laser is used growasymptoticallywithexcitationlaserpower,thusanear- togeneratelaserpulsesatacentralwavelengthof897.44nm unityefficiencywouldneedveryhighpowerpumping. and a pulse width of ∼3 ps. The excitation laser is further At the π pulse, we observe a count rate of 3,700,000 per filtered with an etalon with a linewidth of 45 GHz to match secondonasiliconsingle-photondetector,under81MHzrep- the micropillar cavity. A confocal microscope is operated in etitionratelaserexcitation,whichgivesanoverallsystemef- across-polarizationconfiguration[12],wherebyapolarizeris ficiencyof4.6%.Thesignal(RF)tobackground(mainlylaser placed in the collection arm with its polarization perpendic- leakage)ratiois40:1. Aftercorrectingforindependentlycal- ular to the excitation laser suppressing the laser background ibrated photon detection efficiency (∼33%), polarization ex- byafactorexceeding107. TodeterminethePurcellfactorof tinction(∼50%),transmissionrateintheopticalpath(∼60%, themicropillarcavity,weperformtime-resolvedRFmeasure- includingopticalwindow, polarizer, andtwobeamsplitters), mentsfordifferentcavity-QDdetunings,asplottedinFig.1c. and single-mode fiber coupling efficiency (∼72%), excited- TheshortestRFlifetimeis83.9psat7.8K(bluecurveinthe statepreparationefficiency(∼96%)atπpulse,andassuming insetofFig1c). At28Kwithalarge(>1meV)detuning,the perfect internal quantum efficiency of the QD, we estimate decaytimeconstantincreasesto587.8ps(redcurveinthein- that 66% of the generated single photons are collected into setofFig1c).Themeasuredlifetimeasafunctionofdetuning thefirstobjectivelens(NA=0.68). iswellfittedbythestandardweak-couplingtheoreticalmodel Tofurtherimprovethesignaltobackgroundratio,wepass (orangecurve)[20]whichallowsustodeduceaPurcellfactor the RF through a 3-GHz etalon and then characterize its pu- of6.3(4). rityandindistinguishability. Thesingle-photonnatureofthe Figure2a shows a high-resolution spectrum of the pulsed collected RF at the π pulse is evident from second-order RF, which can be best fitted using a Voigt profile with a ho- coherence measurement [23] shown in Fig.2c where nearly mogeneous(Lorentzian)linewidthof1.91(7)GHzandinho- vanishing multi-photon probability is observed at zero delay mogeneous (Gaussian) line width of 1.14(9) GHz. The ho- (g2(0) = 0.009(1)). Figure2dsummarizethecombinedper- 3 a b 8000 4,000,000 6000 3,000,000 s) nts (/0.05 4000 ounts (/s) 2,000,000 ou C C 2000 1,000,000 0 0 -12 -8 -4 0 4 8 12 0 3 6 9 12 0.5 Frequency (GHz) Excitation field amplitude (nW ) c d 1.0 0.7 efficiency 0.020 e 2 s (a.u.) 0.8 er puls 00..56 g(0) Secon nt p 0.015 d u s -o o 0.6 n 0.4 r c o d malized 0.4 ed phot 00..23 0.010 er corre or ct la N 0.2 olle 0.1 tion C 0.005 0.0 0.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 0.0 0.5 1.0 Delay (ns) Pulse area ( ) FIG.2:CharacterizationofthepulsedRFsingle-photonsource.(a)Ahigh-resolutionRFspectrumwhenexcitedbyaπpulse,obtainedusing ahome-builtFabry-Pe´rotscanningcavityhasafinesseof170,alinewidthof220MHz(fullwidthathalfmaximum),afreespectralrangeof 37.4GHz,andatotaltransmissionrateof61%. TheorangelinewasfittedusingaVoigtprofile. (b)DetectedpulsedRFcountsonasilicon single-photondetectorasafunctionofthesquarerootofexcitationlaserpower. Thebluecurveisaguidetoeyes. (c)Intensity-correlation histogramofthepulsedRFphotonsunderπpulseexcitationobtainedusingaHanburyBrownandTwiss-typeset-up[23]. Thesecond-order correlationg2(0) = 0.009(1)iscalculatedfromtheintegratedphotoncountsinthezerodelaypeakdividedbyitsadjacentpeak. (d)The photonscollectedintothefirstlensperpulse(generation+extractionefficiency)versusthemeasuredsingle-photonpurity(seetext)versus pumppower. formanceoftheefficiencyandsingle-photonpurityasafunc- experiments. We first adopt a similar free-space set-up as tion of pump power. We emphasize that the high generation shown in Ref.[12] with a time delay of 2.1 ns between two andextractionefficiencyareobtainedwithlittlecompromise pulses. Figure3a and 3b show time-delayed histograms of ofthesingle-photonpurity,whichisimportantforrealappli- normalizedtwo-photoncountsfororthogonalandparallelpo- cationsinphotonicquantuminformationprocessing. larization,respectively. Analmostvanishingzero-delaypeak Anothercrucialdemandisthatthephotonsshouldpossess is observed for two photons with identical polarization. In a high degree of indistinguishability, which is at the heart of contrast, for two photons with cross polarization, the zero- opticalquantumcomputing[2],Bosonsampling[4]andsolid- delay peak has the same intensity as its adjacent peaks. We state quantum networks [25]. Pulsed s-shell resonant exci- obtain a raw two-photon quantum interference visibility of tation has been demonstrated to yield a near-unity indistin- 0.964(3).Aftercorrectingwiththeresidualmultiphotonprob- guishability by eliminating emission time jitter and dephas- ability(g2(0)=0.009(1)),weobtainedthecorrecteddegrees ings, however, only for QDs in planar cavities. We note that ofindistinguishabilitytobe0.985(4). the pulsed RF technique is more critically needed for QDs WefurthertesttheHong-Ou-Mandelinterferencebetween withlargePurcellfactorswherethereducedradiativelifetime twoconsecutivelyemittedsinglephotonsatanincreasedtime approachesthetimejitter[12,16]. delayof12.4ns—thelaserpulseseparation(seeRef.[10]for Thesinglephotons’indistinguishabilityistestedusingnon- asimilarsetup). Theresultinghistogramsfororthogonaland postselective two-photon Hong-Ou-Mandel interference [24] parallel polarized two photons are shown in Fig.3c-d, from 4 a c 1.0 1.0 0.8 0.8 ) a.u.) 0.6 (a.u. 0.6 unts ( 00..24 ounts 00..24 o c alized c 10..00 b malized 01..00 d rm 0.8 or 0.8 o N N 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -6 -4 -2 0 2 4 6 -40 -30 -20 -10 0 10 20 30 40 Time delay (ns) Time delay (ns) FIG.3: QuantuminterferencebetweentwopulsedRFsinglephotonsfromaPurcell-enhancedQD-micropillarsystem. Thetimeseparation betweenthetwosinglephotonsemittedfromthesingleQDaresetat2.1nsina-band12.4nsinc-d,respectively.Theinputtwophotonsare π-pulseexcitedandpreparedincross(a,c)andparallel(b,d)polarizations,respectively.Thefittingfunctionistheconvolutionofexponential decay(emitterdecayresponse)withGaussian(photondetectiontimeresponse). Theareaofthefittedcentralpeaksareextractedandusedto calculatetherawvisibility,whichis0.964(3)and0.959(3)forthetimedelayof2.1nsand12.4ns,respectively.Allthedatapointspresented arerawdatawithoutbackgroundsubtraction. which we extract raw and corrected visibilities of 0.959(3) multaneouslyachievesagenerationefficiencyof96%,extrac- and0.978(4),respectively. InstrongcontrasttoRef.[10]that tionefficiencyof66%,single-photonpurityof99.1%andin- usednon-resonantexcitation,increasingthetimedelayby10 distinguishabilityof98.6%. Suchasingle-photonsourcecan ns has negligible effect on the photons’ indistinguishability, be readily used to perform multi-photon interferometric ex- indicatingthattheinhomogeneousbroadening(seeFig.2a)of perimentswithasolid-stateplatform. Immediateapplications thepulsedRFphotonsaremainlyfromspectraldiffusionsat includeimplementationofBosonsampling[4]withtime-bin timescalesmuchslowerthan10ns.Thisdemonstratesthepo- encoding using a loop-based architecture [26]. In addition tentialofthisQD-micropillardeviceasanefficientsourceofa tothephotonicapplications,thehigh-efficiencyextractionof stringofindistinguishablesinglephotons, whichareparticu- transition-selectiveRFwouldalsoallowafast(nanoseconds), larlysuitableforlinearopticalquantumcomputingandBoson high-fidelitysingle-shotreadoutofsingleelectronspins[29]. sampling experiments with time-bin encoding [26]. Alterna- The time-jitter free, pulsed RF method is compatible with tively, onecanalsodemultiplexthesingle-photonstringinto higher Purcell factor, which can allow photon extraction to multiplephotonsatseparatespatialmodes. be further improved in the future by optimized microcavity We compare the performance of the single-photon source fabrications,withoutcomprisingthesingle-photonpurityand created in this work with heralded single photons produced indistinguishability. The current overall system efficiency— by parametric down conversion [27] which have served as 4.6%,thehighestreportedinQDs—canalsobeimprovedus- the workhorse for multi-photon interferometric experiments ingtechniquessuchasorthogonalexcitationanddetectionof inthepastdecades[2]. Inthepreviousdemonstrationofthe RF [17, 18], near-unity-efficiency superconducting nanowire largest, eight-photon entanglement [28], sources of triggered single-photondetection[30],andantireflectioncoatingsofthe singlephotonsweregeneratedwithacountrateof310,000/s, opticalelements. multi-photon emission probability of 2.9% and raw indistin- note: Afterthispaperwassubmitted,webecameawareof guishability of 76%, under a laser pump power of 880 mW. arelatedworkonarXiv[31]. For applications such as Boson sampling [4] that needs sin- Acknowledgement: ThisworkwassupportedbytheNational glephotonsasinput,thesingle-photonsourcerealizedhereis Natural Science Foundation of China, the Chinese Academy superior,asitistentimebrighter,nearperfectlyindistinguish- of Sciences, and the National Fundamental Research Pro- able,andrequiresapumppowerthatis7ordersofmagnitude gram. We acknowledge financial support by the State of lower. Bavaria and the German Ministry of Education and Re- In summary, by pulsed s-shell pumping a QD-micropillar search(BMBF)withintheprojectsQ.com-HandtheChist-era system with a Purcell factor of 6.3, we have realized a high- project SSQN. NG acknowledges support from Danish Re- performancesingle-photonsourcethatatπpulseexcitationsi- searchCouncilforTechnologyandProduction. 5 *email: [email protected],[email protected] [11] C.Santorietal.,Nature(London)419,594(2002);O.Gazzano etal.Nat.Commun.4,1425(2013);P.Goldetal.Phys.Rev. B89,035313(2014);S.Maieretal.,OpticsExpress22,8136 (2014);S.Unsleberetal.Phys.Rev.B91,075413(2015). [12] Y.-M.Heetal.,Nat.Nanotechnol.8,213(2013);Y.-J.Weiet al.NanoLett.14,6515(2014). [1] B. Lounis and M. Orrit, Rep. Prog. Phys.68, 1129 (2005); S. [13] Y.Heetal.Phys.Rev.Lett.111,237403(2013);T.M.Sweeney Buckley, K. Rivoire and J. Vucˆkovic´, Rep. Prog. Phys. 75, etal.Nat.Photonics8,442(2014). 126503(2012). [14] V.Gieszetal.App.Phys.Lett.103,033113(2013). [2] P.Koketal.,Rev.Mod.Phys.79,135(2007);J.L.O’Brien,A. [15] A.J.Bennettetal.Opt.Express13,7772(2005);E.B.Flagg FurusawaandJ.Vucˆkovic´,Nat.Photonics3,687(2009);J.-W. etal.Phys.Rev.Lett.104,137401(2010). Panetal.,Rev.Mod.Phys.84,777(2012). [16] C.Santorietal.New.J.Phys.6,89(2004). [3] S.AaronsonandA.Arkhipov,Thecomputationalcomplexityof [17] A.Mu¨lleretal.Phys.Rev.Lett.99,187402(2007);A.N.Vami- linearoptics,Proceedingsofthe43rdannualACMsymposium vakas, Y. Zhao, C.-Y. Lu and M. Atatu¨re, Nat. Phys. 5, 198 on Theory of computing, 2011, San Jose (ACM, New York, (2009); E. B. Flagg et al., Nat. Phys. 5, 203 (2009); S. Ates 2011),p.333. etal.,Phys.Rev.Lett.103,167402(2009);D.Englundetal., [4] M.A.Broomeetal.,Science339,794(2013);J.B.Springetal., Phys.Rev.Lett.073904(2010). Science339,798(2013);M.Tillmannetal.,Nat.Photonics7, [18] H. Jayakumar et al. Phys. Rev. Lett. 110, 135505 (2013); M. 540(2013);A.Crespietal.,Nat.Photonics7,545(2013). Mu¨ller, S. Bounouar, K. D. Jo¨ns, M. Gla¨ssl, P. Michler, Nat. [5] P.Lodahl,S.Mahmoodian,S.Stobbe,Rev.Mod.Phys.87,347 Photonics8,224(2014). (2015). [19] S.Unsleberetal.arXiv:1512.01048. [6] P.Michleretal.,Science290,2282(2000);C.Santori,M.Pel- [20] M.FoxQuantumOptics,OxfordUniversityPress(2006). ton, G.Solomon, Y.Dale, Y.Yamamoto, Phys.Rev.Lett.86, [21] J.Houeletal.Phys.Rev.Lett.108,107401(2012). 1502(2001);Z.Yuan,B.E.Kardynal,R.M.Stevenson,A.J. [22] A.Zrenneretal.Nature418,612(2002);R.Meletetal.Phys. Shields,C.J.Lobo,K.Cooper,N.S.Beattie,D.A.Ritchie,and Rev.B78,073301(2008). M.Pepper,Science295,102(2002). [23] R.HanburyBrown,R.Q.Twiss,Nature178,1447(1956). [7] J. M. Ge´rard et al. Phys. Rev. Lett. 81, 1110 (1998); M. Pel- [24] C.K.Hong,Z.Y.OuandL.Mandel,Phys.Rev.Lett.59,2044 ton et al. Phys. Rev. Lett. 89, 233602 (2002); S. Strauf, N. (1987). G.Stoltz, M.T.Rakher, L.A.Coldren, P.M.Petroff, andD. [25] A.Delteiletal.arXiv:1507.00465(2015). Bouwmeester, Nat.Photonics1, 704(2007); T.Heindeletal. [26] P.C.Humphreysetal.Phys.Rev.Lett.111,150501(2013);K. Appl.Phys.Lett.96,011107(2010). R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, Phys. [8] D. Englund et al. Phys. Rev. Lett. 95, 013904 (2005); A. Rev.Lett.113,120501(2014). Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and [27] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. J. Vuckovic, Nat. Phys. 4, 859 (2008); K.H. Madsen et al. Sergienko,andY.Shih,Phys.Rev.Lett.75,4337(1995). Phys.Rev.B90,155303(2014);L.Sapienza,M.Davanco,A. [28] X.-C.Yaoetal.Nat.Photonics6,225(2012). Badolata,andK.Srinivasan,Nat.Commun.6,7833(2015). [29] C.-Y.Luetal.Phys.Rev.B81, 035332(2010); A.N.Vami- [9] J.Claudonetal.Nat.Photonics4,174(2010);M.E.Reimeret vakasetal.Nature(London)467,297(2010);A.Delteiletal. al.Nat.Commun.3,737(2012);M.Munschetal.Phys.Rev. Phys.Rev.Lett.112,116802(2014). Lett.110,177402(2013). [30] F.Marsilietal.,Nat.Photonics7,210(2013) [10] M.Gschreyetal.Nat.Commun.6,7662(2015);A.Thomaet [31] N.Somaschietal.,arXiv:1510.06499. al.arXiv:1507.05900(2015).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.