ebook img

On Classification of Distorted Images with Deep Convolutional Neural Networks PDF

0.96 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Classification of Distorted Images with Deep Convolutional Neural Networks

ONCLASSIFICATIONOFDISTORTEDIMAGESWITHDEEPCONVOLUTIONALNEURAL NETWORKS YirenZhou,SiboSong,Ngai-ManCheung SingaporeUniversityofTechnologyandDesign ABSTRACT Some previous works have studied the effect of image distor- Imageblurandimagenoisearecommondistortionsduringim- tion[10].FocusingonDNN,Basuetal.[11]proposedanewmodel 7 ageacquisition. Inthispaper,wesystematicallystudytheeffectof modifiedfromdeepbeliefnetstodealwithnoisyinputs. Theyre- 1 imagedistortionsonthedeepneuralnetwork(DNN)imageclassi- portedgoodresultsonanoisydatasetcalledn-MNIST,whichcon- 0 fiers. First,weexaminetheDNNclassifierperformanceunderfour tainsGaussiannoise,motionblur,andreducedcontrastcomparedto 2 typesofdistortions. Second,weproposetwoapproachestoallevi- originalMNISTdataset. Recently,DodgeandKaram[12]reported n ate the effect of image distortion: re-training and fine-tuning with the degradation due to various image distortions in several DNN. a noisy images. Our results suggest that, under certain conditions, Comparedtotheseworks,weperformaunifiedstudytoinvestigate J fine-tuningwithnoisyimagescanalleviatemucheffectduetodis- effectofimagedistortionon(i)hand-writtendigitclassificationand 8 tortedinputs,andismorepracticalthanre-training. (ii) natural image classification. Moreover, we examine using re- Index Terms— Image blur; image noise; deep convolutional trainingandfine-tuningwithnoisyimagestoalleviatetheeffect. ] In classification of “clean” images (i.e., without distortion), neuralnetworks;re-training;fine-tuning V some previous work has attempted to introduce noise to the train- C 1. INTRODUCTION ing data [13, 14]. In these works, their purpose is to use noise to . Recently,deepneuralnetworks(DNNs)haveachievedsuperiorre- regularizethemodelinordertopreventoverfittingduringtraining. s sults on many computer vision tasks [1]. In image classification, On the contrary, our goal is to understand the benefits of using c [ DNN approaches such as Alexnet [2] have significantly improved noisytrainingdatainclassificationofdistortedimages. Ourresults theaccuracycomparedtopreviouslyhand-craftedfeatures. Further alsosuggestthat, undercertainconditions, fine-tuningusingnoisy 1 worksonDNN[3,4]continuetoadvancetheDNNstructuresand imagescanbeaneffectiveandpracticalapproach. v improvetheperformance. 2. DEEPARCHITECTURE 4 Inpracticalapplications,varioustypesofdistortionsmayoccur 2 inthecapturedimages. Forexample,imagescapturedwithmoving In this section, we briefly introduce the idea of deep neural net- 9 cameras may suffer from motion blur. In this paper, we system- work (DNN). There are many types of DNN, here we mainly in- 1 atically study the effect of image distortion on DNN-based image troducedeepconvolutionalneuralnetwork(DCNN),adetailedin- 0 classifiers.Wealsoexaminesomestrategytoalleviatetheimpactof troductionforDNNcanbefoundin[15]. . 1 imagedistortionontheclassificationaccuracy. DNNisamachinelearningarchitecturethatisinspiredbyhu- 0 Two main categories of image distortions are image blur and mans’centralnervoussystems. ThebasicelementinDNNisneu- 7 imagenoise[5].Theyarecausedbyvariousissuesduringimageac- ron. InDNN,neighborhoodlayersarefullyconnectedbyneurons, 1 quisition. Forexample,defocusbluroccurswhenthecameraisout andoneDNNcanhavemultipleconcatenatedlayers. Thoselayers : offocus. Motionbluriscausedbyrelativemovementbetweenthe togetherformaDNN. v cameraandtheview,whichiscommonforsmartphone-basedimage DNNhasachievedgreatperformanceforproblemsonsmallim- i X analysis[6,7,8]. Imagenoiseisusuallycausedbypoorillumina- ages[16]. However, forproblemswithlargeimages, conventional r tionand/orhightemperature,whichdegradetheperformanceofthe DNN need to use all the nodes in the previous layer as inputs to a chargecoupleddevice(CCD)insidethecamera. thenextlayer,andthisleadtoamodelwithaverylargenumberof WhenweapplyaDNNclassifierinapracticalapplication,itis parameters,andimpossibletotrainwithalimiteddatasetandcom- possiblethatsomeimageblurandnoisewouldoccurintheinputim- putationsources. Theideaofconvolutionalneuralnetwork(CNN) ages. ThesedegradationswouldaffecttheperformanceoftheDNN is to make use of the local connectivity of images as prior knowl- classifier. Our work makes several contributions to this problem. edge,thatanodeisonlyconnectedtoitsneighborhoodnodesinthe First, we study the effect of image distortion on the DNN classi- previouslayer. Thisconstraintsignificantlyreducesthesizeofthe fier. WeexaminetheDNNclassifierperformanceunderfourtypes model,whilepreservingthenecessaryinformationfromanimage. ofdistortionsontheinputimages: motionblur,defocusblur,Gaus- Foraconvolutionallayer,eachnodeisconnectedtoalocalre- siannoiseandacombinationofthem. Second,weexaminetwoap- gion in the input layer, which is called receptive field. All these proachestoalleviatetheeffectofimagedistortion.Inoneapproach, nodesformanoutputlayer. Forallthesenodesintheoutputlayer, were-trainthewholenetworkwiththenoisyimages. Wefindthat they have different kernels, but they share the same weights when thisapproachcanimprovetheaccuracywhenclassifyingdistorted calculatingactivationfunction. images.However,re-trainingrequireslargetrainingdatasetsforvery Fig.1showsthearchitectureofLeNet-5,whichisusedfordigit deepnetworks.Inspiredby[9],inanotherapproach,wefine-tunethe imageclassificationonMNISTdataset[17].Fromthefigurewecan firstfewlayersofthenetworkwithdistortedimages.Essentially,we seethatthemodelhastwoconvolutionallayersandtheircorrespond- adjustthelow-levelfiltersoftheDNNtomatchthecharacteristics ingpoolinglayers.Thisistheconvolutionalpartforthemodel.The ofthedistortedimages. followingtwolayersareflattenandfullyconnectedlayers,theselay- Infine-tuning,westartfromthepre-trainedmodeltrainedwith the original dataset (i.e., images without distortion). We fine-tune the first N layers of the model on a distorted dataset while fixing the parameters in the remaining layers. The reason to fix param- eters in the last layers is that image blur and noise are considered tohavemoreeffectonlow-levelfeaturesinimages, suchascolor, edge,andtexturefeatures. However,thesedistortionshavelittleef- Fig.1.StructureofLeNet-5. fectonhigh-levelinformation,suchasthesemanticmeaningsofan image[21].Therefore,infine-tuning,wefocusonthestartinglayers ofaDNN,whichcontainmorelow-levelinformation. Asanexam- ple, for LeNet-5 we have 4 layers with parameters, that means N israngingfrom1to4. Wedenotefine-tuningmethodsasfirst-1to first-4. In re-training, we train the whole network with the distorted Fig.2.StructureofCIFAR10-quickmodel. datasetfromscratchanddonotusethepre-trainedmodel.Wedenote there-trainingmethodasre-training. For re-training LeNet-5, we set the learning rate to 10−3, and ersareinheritedfromconventionalDNN. thenumberofepochsto20. Forfine-tuning,wesetlearningrateto 3. EXPERIMENTALSETTINGS 10−5(1%ofthere-traininglearningrate),andnumberofepochsto We conduct experiment on both relatively small datasets [17, 18] 15.Eachepochtakesabout1minute,sothetrainingproceduretakes andalargeimagedataset,ImageNet[19].Weexaminedifferentfull about20minutesforre-training,and15minutesforfine-tuning. training/fine-tuningconfigurationsonsomesmalldatasetstogain CIFAR-10 dataset consists of 60000 32×32 color images in insight into their effectiveness. We then examine and validate our 10classes,with6000imagesperclass. 50000aretrainingimages, approachonImageNetdataset. and10000aretestimages.Tomakethetrainingfaster,weuseafast We conduct the experiment using MatConvNet [20], a MAT- model provided in MatConvNet [20]. The structure of CIFAR10- LAB toolbox which can run and learn convolutional neural net- quickmodelisshowninFig.2. works. AlltheexperimentsareconductedonaDellT5610Work- SimilartopreviousapproachesforMNIST,weusefine-tuning StationwithIntelXeonE5-2630CPU. andre-trainingforCIFARdistorteddataset. Thereare5layerswith parameters in CIFAR10-quick model, so we have first-1 to first-5 as fine-tuning methods. The re-training method is denoted as re- n training. o otiur Forre-trainingCIFAR10-quick,wesetthenumberofepochsto Mbl 45. Learningrateissetto5×10−2 forfirst30epochs,5×10−3 for the following 10 epochs, and 5×10−4 for the last 5 epochs. Forfine-tuning,wesetthenumberofepochsto30. Learningrateis s cu 5×10−4forfirst25epochs,and5×10−5forlast5epochs. Each o efur epochtakesabout3minutes,sothetrainingproceduretakesabout Dbl 135minutesforre-training,and90minutesforfine-tuning. n a Gaussinoise Motionblur e bin us m c Allco Defoblur Fig. 3. Example MNIST images after different amount of motion blur,defocusblur,Gaussiannoise,andallcombined. n a Deep architectures and datasets: In this evaluation we con- ssie us siderthreewell-knowndataset: MNIST[17], CIFAR-10[18], and Ganoi ImageNet[19]. MNISTisahandwrittendigitsdatasetwith60000trainingim- ages and 10000 test images. Each image is a 28×28 greyscale ne image,belongingtoonedigitclassfrom’0’to’9’. ForMNIST,we bi m useLeNet-5[17]forclassification.ThestructureofLeNet-5weuse Allco isshowninFig.1.Thisnetworkhas6layersand4ofthemhavepa- Fig.4.ExampleCIFAR-10imagesafterdifferentamountofmotion rameterstotrain:thefirsttwoconvolutionallayers,flattenandfully blur,defocusblur,Gaussiannoise,andallcombine. connectedlayers. Weconsidertwoapproachestodealwithdistortedimages:fine- Here we also present an evaluation on ILSVRC2012 dataset. tuningandre-trainingwithnoisyimages. ILSVRC2012[22]isalarge-scalenaturalimagedatasetcontaining morethanonemillionimagesin1000categories. Theimagesand 4. EXPERIMENTALRESULTSANDANALYSIS categoriesareselectedfromImageNet[19].Tounderstandtheeffect Fig.6and7showtheresultsofourexperiment.Wecompare3meth- of limited data in many applications, we randomly choose 50000 ods: notrainmeansthatthemodelistrainedonthecleandataset, imagesfromtrainingdatasetfortraining, andusevalidationsetof whiletestedonthenoisydataset. first-N meansthatwefine-tuning ILSVRC2012,whichcontains50000images,fortesting. thefirstNlayerswhilefixingtheremaininglayersinthenetwork. Weusefine-tuningmethodforILSVRC2012validationsetwith ForLeNet-5network,thereare4trainablelayers,sowehavefirst-1 apre-trainedAlexnetmodel[2]. Wedonotusere-trainingmethod tofirst-4,forCIFAR10-quicknetwork,wehavefirst-1tofirst-5. here,becausere-trainingAlexnetusingonlysmallpartofthetrain- ResultsonMNIST:Fig.6showstheresultsonMNISTdataset. ingsetofILSVRC2012wouldcauseoverfitting. Wefine-tunethe FormotionblurandGaussiannoise,theeffectofdistortionisrela- first3layersofAlexnet,whilefixingtheremaininglayers.Forfine- tivelysmall(notethatthescalesofdifferentplotsaredifferent).De- tuningprocess,thenumberofepochsissetto20. Thelearningrate focusblurandcombinednoisehavemoreeffectonerrorrate. This issetto10−8to10−10fromepoch1toepoch20,decreasesbylog result is consistent with the observation on Fig. 3, that the motion space.Wealsouseaweightdecayof5×10−4.Approximatetrain- blurandGaussiannoiseimagesaremorerecognizablethandefocus ingtimeis90minutesforeachepoch,and30hoursfortotalprocess. blurandcombinednoise.MNISTdatasetcontainsgreyscaleimages Regardingthecomputationtime,fine-tuningtakeslesstimethan withhandwrittenstrokes, soedgesalongthestrokesareimportant re-trainingontheMNISTandCIFAR-10dataset.ForILSVRC2012 features. In our experiment, the stroke after defocus blur covers a validation set, we also need to use fine-tuning method in order to widerarea, whileweakens theedgeinformation. The motionblur preventoverfitting. also weakens edge information, but not as severe as defocus blur. Thisisbecause,underthesameparameter,theareaofmotionbluris smallerthanthedefocusblur. Gaussiannoisehaslimitedeffecton theedgeinformation,sotheerrorratehaslittleincrease. Combined noisehavemuchimpactontheerrorrate. Both fine-tuning and re-training methods can significantly re- duceerrorrate. first-3andfirst-4haveverysimilarresults,indicat- ingthatdistortionhaslittleeffectonthelastseverallayers. When thedistortionissmall,fine-tuningbyfirst-3andfirst-4achievecom- parableresultswithre-training.Whenthedistortionlevelincreases, (a) (b) Fig. 5. Example images from ImageNet validation set. (a) is the re-trainingachievesabetterresult. originalimage.(b)isthedistortedimage. ResultsonCIFAR-10:FromFig.4wecanseethedistortionsin CIFAR-10notonlyaffecttheedgeinformation,butalsohaveeffect Typesofblurandnoise: Inthisexperiment,weconsidertwo oncolorandtextureinformation.Therefore,all3typesofdistortion typesofblur: motionbluranddefocusblur,andonetypeofnoise: canmaketheimagesdifficulttorecognize. Thisisconsistentwith Gaussiannoise. the results shown in Fig. 7. Different from the results on MNIST Motionblurisatypicaltypeofblurusuallycausedbycamera dataset, all 3 types of distortion significantly worsen the error rate shakingand/orfast-movingofthephotographedobjects. Wegener- onnotrainresult. ate the motion blur kernel using random walk [23]. For each step Usingbothfine-tuningandre-trainingmethodscansignificantly size, we move the motion blur kernel in a random direction by 1- reducetheerrorrate. first-3tofirst-5givesimilarresults,indicating pixel.Thesizeofthemotionblurkernelissampledfrom[0,4]. that the distortion mainly affects the first 3 layers. When the dis- Defocus blur happens when the camera loses focus of an im- tortionlevelislow,fine-tuningandre-traininghavesimilarresults. age.Wegeneratethedefocusblurbyuniformanti-aliaseddisc.The However,whenthedistortionlevelishighorundercombinednoise, radiusofthediscissampledfrom[0,4]. re-traininghasbetterresultsthanfine-tuning. From both figures we can observe that when we fine-tune the Aftergeneratingamotionoradefocusblurkernelforoneimage, first 3 layers, the results are very similar to fine-tuning the whole weusethiskernelforconvolutionoperationonthewholeimageto networks.Thisresultindicatesthatimagedistortionhasmoreeffect generateablurredimage. onthelow-levelinformationoftheimage, whileithaslittleeffect Gaussiannoiseiscausedbypoorilluminationand/orhightem- onhigh-levelinformation. perature,whichpreventsCCDinacamerafromgettingcorrectpixel Analysis: To gain some insight into the effectiveness of fine- values. WechooseGaussiannoisewithzeromeans,andwithstan- tuning and re-training on distorted data, we look into the statistics darddeviationσsampledfrom[0,4]onacolorimagewithaninteger ofthefeaturemapinsidethemodel. Inspiredby[24], wefindthe valuein[0,255]. meanvarianceofimagegradientmagnitudetobeausefulfeature. Finally,weconsideracombinationofalltheabovethreetypes Instead of calculating the image gradient, we calculate the feature of distortions. The value of each noise is sampled from [0,4], re- mapgradient. Then,wecalculatethemeanvarianceoffeaturemap spectively. gradientmagnitude. Fig.3and4showtheexampleimagesofblurandnoiseeffectsin Given a feature map fm as input, we first calculate gradient MNISTandCIFAR-10,respectively.Eachrowofimagesrepresents alonghorizontal(x)andverticaldirectionsusingSobelfilters onetypeofdistortion.Forthefirst3rows,onlyonetypeofdistortion 1(cid:0)10−1(cid:1) 1(cid:0) 1 2 1 (cid:1) is applied, and for the last row, we apply all 3 types of distortion sx = 4 2100−−21 ,sy = 4 −01−02−01 (1) on one single image. As we see each row from left to right, the Thenwehavegradientmagnitudeoffmatlocation(m,n)as distortionlevelincreasesfrom0to4. Fig.5showsanexampleinILSVRC2012validationset. When (cid:112) g (m,n)= (fm⊗s )2(m,n)+(fm⊗s )2(m,n) (2) wegeneratethedistorteddataset,eachimageintrainingandtesting fm x y sethasrandomdistortionvaluessampledfrom[0,4]forall3types ofdistortion. 1.8 25 1.05 40 no train )%( etaR rorrE111...2461 ffffriiiierrrrsssstrtttta----1234in )%( etaR rorrE1120505 )%( etaR rorrE0.09.591 )%( etaR rorrE123000 0.85 0.8 0 0 1 2 3 4 0 0 1 2 3 4 0 1 2 3 4 < 0 1 2 3 4 Motion Blur Size Defocus Blur Size Gaussian Noise Combined Noise (a) (b) (c) (d) Fig.6.ErrorratesforLeNet-5modelonMNISTdatasetunderdifferentblursandnoises. 60 no train 80 70 100 )%( etaR rorrE23450000 fffffriiiiierrrrrssssstrttttta-----12345in )%( etaR rorrE246000 )%( etaR rorrE2345600000 )%( etaR rorrE 24680000 10 10 0 0 1 2 3 4 0 0 1 2 3 4 0 1 2 3 4 < 0 1 2 3 4 Motion Blur Size Defocus Blur Size Gaussian Noise Combined Noise (a) (b) (c) (d) Fig.7.ErrorratesforCIFAR10-quickmodelonCIFARdatasetunderdifferentblursandnoises. 1.1 1.1 agescanbeclosetotheresultsonoriginalimages.Whenweretrain edutingam1.051 edutingam1.051 tthoertemdoddaetlaosent,daisntdorttheedfiemaatugrees,mwaeptrreyptroesfietnttahteioDnNisNnmotondeecleosnsadriilsy- tneidarg fo ecnairaV00..0089..55890 nfffffriiiiierrrrrossssst rtttttta-----r112345ainin 2 3 4 tneidarg fo ecnairaV00..0089..55890 nfffffriiiiierrrrrossssst rtttttta-----r112345ainin 2 3 4 cTalnaodbselfienteo1er.-rttohuArencrreacedtupermra(ec%osyed)nectloaomticnoploenIarmairongiafsigonoenarNlidgbmieiestnttoowavdrlaeetlieelimddnaaptgireoecfisn-l.ntesreaae-nittn.uendeddAismlteoxorndteeedtlmodel Motion Blur Size Defocus Blur Size (a) (b) data data data data Fig.8. Meanvarianceoffeaturemapgradientmagnitudeforconv top-1error 42.9 53.1 42.9 47.7 layer 3 of CIFAR10-quick model. (a): motion-blur. (b): defocus top-5error 20.1 28.2 20.4 23.6 blur. ResultsonImagenet: Wealsoexaminetheefficiencyoffine- tuningonalargedatasetandaverydeepnetwork. Forexperiment Afterwehavethegradientmagnitudeg forfeaturemapfm, onthetrainingandvalidationsetofILSVRC2012,wegeneratedthe fm wecalculatethevarianceofgradientmagnitude:v =var(g ). distorteddatabycombiningall3typesofblur/noise. Foreachim- fm fm age,andforeachtypeofdistortion,thedistortionlevelisuniformly When we apply defocus blur or motion blur on an image, the sampledfrom[0,4].Afterobtainingthedistorteddata,wefine-tune clear edges are smeared out into smooth edges, thus the gradient thefirst3layersofapre-trainedAlexnetmodel[2]. Table1shows magnitudemapbecomessmooth, andhaslowervariance. Feature mapswithhighergradientvariancevaluev areconsideredtohave the accuracy comparison between the original pre-trained Alexnet fm model and the fine-tuned model. Compared with the original pre- moreedgeandtextureinformation,thusmorehelpfulforimagerep- resentation. While lower v value indicates that the information trained model, the fine-tuned model increases the performance on fm distorteddata,whilekeepingtheperformanceoncleandata. When insidethefeaturemapislimited,thusnotsufficientforimagerepre- we want to use a large DNN model like Alexnet on a limited and sentation. distorteddataset,fine-tuningonfirstfewlayerscanincreasemodel Fig. 8 shows the mean variance of feature map gradient mag- accuracyondistorteddata,whilemaintainingtheaccuracyofclean nitude for conv3 layer(the last conv layer) of the CIFAR10-quick data. model. From the two figures we observe that: (1) When apply- ingoriginalmodelondistortedimages,themeanvariancedecreases 5. CONCLUSIONS comparedtoapplyingthemodelonoriginalimages(seenotrain), Fine-tuningandre-trainingthemodelusingnoisydatacanincrease suggesting that edge or texture information is lost because of the the model performance on distorted data, and re-training method distortion. (2) When applying fine-tuning method to the distorted usually achieves comparable or better accuracy than fine-tuning. images,themeanvariancemaintainssimilarasthatoforiginalim- However,thereareissuesweneedtoconsider: ages,suggestingthatbyfine-tuningondistortedimages,themodel • The size of the distorted dataset: If the model is very deep canextractusefulinformationfromthedistortedimages. (3)When andthesizeofdistorteddatasetissmall,trainingthemodel applyingretrainingmethodondistortedimages,themeanvariance onthelimiteddatasetwouldleadtooverfitting. Inthiscase, ishigherthanapplyingthemodelonoriginalimages. Itmeansthat wecanfine-tunethemodelbyfirstNlayerswhilefixingthe the retrained model fits the distorted image dataset. These results remaininglayerstopreventoverfitting. suggestthatwhenwefine-tunethemodelondistortedimages, we trytomakethefeaturemaprepresentationofdistortedimagesclose • The distortion level of noise: When the distortion level is tooriginalimages,sothattheclassificationresultsondistortedim- high, re-training on distorted data has better results. When thedistortionlevelislow,bothre-trainingandfine-tuningcan [14] Yixin Luo and Fan Yang, “Deep learning with noise,” achievegoodresults. Andinthiscase,fine-tuningisprefer- http://www.andrew.cmu.edu/user/fanyang1/ ablebecauseitconvergesfaster,whichmeanslesscomputa- deep-learning-with-noise.pdf,2014. tiontime,andisapplicabletolimitedsizedistorteddatasets. [15] “DeepLearning documentation,” http:// deeplearning.net/tutorial/contents.html, 6. REFERENCES 2016. [16] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing [1] AliRazavian,HosseinAzizpour,JosephineSullivan,andSte- thedimensionalityofdatawithneuralnetworks,”Science,vol. fanCarlsson, “Cnnfeaturesoff-the-shelf:anastoundingbase- 313,no.5786,pp.504–507,2006. lineforrecognition,” inProceedingsoftheIEEEConference onComputerVisionandPatternRecognitionWorkshops,2014, [17] Yann LeCun, Le´on Bottou, Yoshua Bengio, and Patrick pp.806–813. Haffner, “Gradient-basedlearningappliedtodocumentrecog- nition,” ProceedingsoftheIEEE,vol.86, no.11, pp.2278– [2] AlexKrizhevsky,IlyaSutskever,andGeoffreyEHinton,“Ima- 2324,1998. genetclassificationwithdeepconvolutionalneuralnetworks,” in Advances in neural information processing systems, 2012, [18] AlexKrizhevskyandGeoffreyHinton,“Learningmultiplelay- pp.1097–1105. ersoffeaturesfromtinyimages,”2009. [19] J.Deng, W.Dong, R.Socher, L.-J.Li, K.Li, andL.Fei-Fei, [3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” CoRR, vol. “ImageNet: ALarge-ScaleHierarchicalImageDatabase,” in CVPR09,2009. abs/1409.1556,2014. [20] A.VedaldiandK.Lenc, “Matconvnet–convolutionalneural [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, networksformatlab,” . “Deepresiduallearningforimagerecognition,”arXivpreprint arXiv:1512.03385,2015. [21] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang, “Deeplearningfaceattributesinthewild,” inProceedingsof [5] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, “A theIEEEInternationalConferenceonComputerVision,2015, reviewofimagedenoisingalgorithms,withanewone,”Multi- pp.3730–3738. scaleModeling&Simulation,vol.4,no.2,pp.490–530,2005. [22] OlgaRussakovsky, JiaDeng, HaoSu, JonathanKrause, San- [6] Hossein Nejati, V Pomponiu, Thanh-Toan Do, Yiren Zhou, jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, S Iravani, and Ngai-Man Cheung, “Smartphone and mobile Aditya Khosla, Michael Bernstein, Alexander C. Berg, and imageprocessingforassistedliving,” IEEESignalProcessing LiFei-Fei, “ImageNetLargeScaleVisualRecognitionChal- Magazine,pp.30–48,2016. lenge,” InternationalJournalofComputerVision(IJCV),vol. [7] V Pomponiu, H Nejati, and Ngai-Man Cheung, “Deepmole: 115,no.3,pp.211–252,2015. Deepneuralnetworksforskinmolelesionclassification,” in [23] MichalHradisˇ,JanKotera,PavelZemc´ık,andFilipSˇroubek, Proc. IEEE International Conference on Image Processing “Convolutionalneuralnetworksfordirecttextdeblurring,” in (ICIP),2016. ProceedingsofBMVC,2015,pp.2015–10. [8] Thanh-ToanDo,YirenZhou,HaitianZheng,Ngai-ManChe- [24] Zhong Zhang and Shuang Liu, “Gmvp: gradient magnitude ung,andDawnKoh, “Earlymelanomadiagnosiswithmobile andvariancepooling-basedimagequalityassessmentinsensor imaging,”inProc.36thAnnualInternationalConferenceofthe networks,” EURASIP Journal on Wireless Communications IEEEEngineeringinMedicineandBiologySociety(EMBC), andNetworking,vol.2016,no.1,pp.1,2016. 2014. [9] JasonYosinski, JeffClune, YoshuaBengio, andHodLipson, “Howtransferablearefeaturesindeepneuralnetworks?,” in Advancesinneuralinformationprocessingsystems,2014,pp. 3320–3328. [10] YirenZhou,Thanh-ToanDo,HZheng,Ngai-ManCheung,and LuFang, “Computationandmemoryefficientimagesegmen- tation,” IEEETransactionsonCircuitsandSystemsforVideo Technology,2016. [11] SaikatBasu,ManoharKarki,SangramGanguly,RobertDiB- iano, Supratik Mukhopadhyay, and Ramakrishna Nemani, “Learning sparse feature representations using probabilistic quadtreesanddeepbeliefnets,” inProceedingsoftheEuro- peanSymposiumonArtificialNeuralNetworks,ESANN,2015. [12] Samuel Dodge and Lina Karam, “Understanding how im- age quality affects deep neural networks,” arXiv preprint arXiv:1604.04004,2016. [13] Salah Rifai, Xavier Glorot, Yoshua Bengio, and Pascal Vin- cent, “Adding noise to the input of a model trained with a regularizedobjective,” arXivpreprintarXiv:1104.3250,2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.