ebook img

On Advanced Analytic Number Theory PDF

241 Pages·01.362 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Advanced Analytic Number Theory

On Advanced Analytic Number Theory By C.L. Siegel TataInstituteofFundamentalResearch Mumbai,India i FOREWORD “AdvancedAnalyticNumberTheory”wasfirstpublishedbytheTataInsti- tuteofFundamentalResearchintheirLectureNotesseriesin1961. Itisnow being made available in book form with an appendix–an English translation of Siegel’s paper “Berechnung von Zetafunktionen an ganzzahligen Stellen” whichappearedintheNachrichtenderAkademiederWissenschafteninGo¨ttingen, Math-Phy. Klasse. (1969),pp.87-102. We are thankful to Professor Siegel and to the Go¨ttingen Academy for according us permission to translate and publish this important paper. We also thank Professor S. Raghavan, who originally wrote the notes of Profes- sorSiegel’slectures,formakingavailableatranslationofSiegel’spaper. K.G.Ramanathan ii PREFACE During the winter semester 1959/60, I delivered at the Tata Institute of FundamentalResearchaseriesoflecturesonAnalyticNumberTheory. Itwas mayaimtointroducemyhearerstosomeoftheimportantandbeautifulideas whichweredevelopedbyL.KroneckerandE.Hecke. Mr.S.Raghavanwasverycarefulintakingthenotesoftheselecturesand inpreparingthemanuscript. Ithankhimforhishelp. CarlLudwigSiegel Contents 1 Kronecker’sLimitFormulas 1 1 Thefirstlimitformula. . . . . . . . . . . . . . . . . . . . . . 1 2 TheDedekindη-function . . . . . . . . . . . . . . . . . . . . 13 3 ThesecondlimitformulaofKronecker. . . . . . . . . . . . . 20 4 Theelliptictheta-functionϑ (w,z) . . . . . . . . . . . . . . . 29 1 5 TheEpsteinZeta-function . . . . . . . . . . . . . . . . . . . 41 2 ApplicationsofKronecker’sLimitFormulastoAlgebraicNumber Theory 52 1 Kronecker’ssolutionofPell’sequation . . . . . . . . . . . . . 52 2 ClassnumberoftheabsoluteclassfieldofQ(√d)(d <0) . . . 69 3 TheKroneckerLimitFormulaforrealquadraticfieldsandits applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 RayclassfieldsoverQ(√d),d <0 . . . . . . . . . . . . . . . 89 5 RayclassfieldsoverQ(√D),D>0. . . . . . . . . . . . . . . 102 6 SomeExamples . . . . . . . . . . . . . . . . . . . . . . . . . 133 3 ModularFunctionsandAlgebraicNumberTheory 149 1 Abelianfunctionsandcomplexmultiplications . . . . . . . . 149 2 FundamentaldomainfortheHilbertmodulargroup . . . . . . 165 3 Hilbertmodularfunctions . . . . . . . . . . . . . . . . . . . . 184 1 EllipticModularForms . . . . . . . . . . . . . . . . . . . . . 220 2 ModularFormsofHecke . . . . . . . . . . . . . . . . . . . . 225 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 iii Chapter 1 Kronecker’s Limit Formulas 1 The first limit formula 1 Let s = σ+it beacomplexvariable, σandt beingreal. TheRiemannzeta- functionζ(s)isdefinedforσ>1by ∞ ζ(s)= k s, − Xk=1 here k s stands for e slogk, with the real value of logk. The series converges − − absolutelyforσ > 1anduniformlyinevery s-half-planedefinedbyσ 1+ ≥ ǫ(ǫ > 0). ItfollowsfromatheoremofWeierstrassthatthesum-functionζ(s) is a regular function of s for σ > 1. Riemann proved that ζ(s) possesses an analytic continuation into the whole s-plane which is regular except for a simplepoleats=1andsatisfiesthewell-knownfunctionalequation s 1 s π−s/2Γ ζ(s)=π−((1−s)/2)Γ − ζ(1 s), (cid:18)2(cid:19) 2 ! − Γ(s)beingEuler’sgamma-function. Weshallnowprove Proposition 1. The functionζ(s)can becontinued analytically intothehalf- planeσ>0andthecontinuationisregularforσ>0,exceptforasimplepole ats=1withresidue1. Further,ats=1,ζ(s)hastheexpansion 1 ζ(s) =C+a (s 1)+a (s 1)2+ − s 1 1 − 2 − ··· − 1 Kronecker’sLimitFormulas 2 CbeingEuler’sconstant. We first need to prove the simplest form of a summation formula due to Euler,namely. Lemma.If f(x)isa complex-valued function having a continuous derivative f (x)intheinterval1 x n,then ′ ≤ ≤ 1 n−1 1 f(1)+ f(n) f (x+k) x dx+ Z  ′ − 2! 2 0 Xk=1 n n = f(k) f(x)dx. (1) −Z Xk=1 1 2 Proof. In face, if a complex-valued function g(x) defined in the interval 0 ≤ x 1, has a continuous derivative g(x), then we have from integration by ′ ≤ parts, 1 1 1 1 g(x) x= dx= (g(0)+g(1)) g(x)dx. (2) ′ Z 2! 2 −Z 0 0 (Formula(2)hasasimplegeometricinterpretationinthattherighthandsideof (2)representstheareaoftheportionofthe(x,y)-planeboundedbythecurve y=g(x)andthestraightlinesy g(0)=(g(1) g(0))x,x=g(0)andx=(g1)). − − In(2),wenowsetg(x)= f(x+k),successivelyfork=1,2,...,n 1. Wethen − havefork=1,2,...,n 1, − 1 1 1 k+1 f (x+k) x dx= (f(k)+ f(k+1)) f(x)dx. ′ Z − 2! 2 −Z 0 k Addingup,weobtainformula(1). (cid:3) ThisisEuler’ssummationformulainitssimplestform,withtheremainder terminvolvingonlythefirstderivativeof f(x). It is interesting to notice that if one uses the fact that the Fourier series e2πinx (n = 0, omitted) converges uniformly to x 1/2 in any closed in- − n 2πin − terPval (ǫ,1 ǫ)(0 < ǫ < 1) one obtains from (2) the following useful result, − namely, If f(x)isperiodicinxwithperiod1andhasacontinuousderivative,then 1 f(x)= ∞ e2πinx f(x)e 2πinxdx. − Z nX= 0 −∞ Kronecker’sLimitFormulas 3 ProofofProposition1.Letusnowspecialize f(x)tobethefunction f(x) = x−s =e−xlogx (logxtakingrealvaluesfor x>0). Thefunctionx−s isevidently 3 continuously differentiable in the interval 1 x n; and applying (1) to the ≤ ≤ functionx s,weget − sn−1 1(x+k) s 1 x 1 dx+ 1(1+n s) − − − − Z − 2! 2 Xk=1 0 n n = k s x sdx − − −Z Xk=1 1 = nk=1k−s− 1−sn11−s(ifs,1) (3) Pn k 1 log−n(ifs=1).  k=1 − − LetusnowobservePthattheright-handsideof(3)isanentirefunctionofs. We suppose now that σ > 1. When n tends to infinity nx sdx tends to 1 − n R 1/(s 1). Further, as n tends to infinity, k s converges to ζ(s). Thus for − − k=1 σ > 1, the right hand side of (3) convergePs to ζ(s) 1/(s 1) as n tends to − − infinity. Ontheotherhand,lettheleft-handsideof (3)bedenotedbyϕ (s). Then n ϕ (s)isanentirefuncitonofsandfurther,forσ ǫ >0, n ≥ 1 n 1+n ǫ ϕ (s) s k 1 ǫ + − | n |≤ 2| | − − 2 Xk=1 1 s ∞ k 1 ǫ +1. − − ≤ 2| | Xk=1 Thus, as n tends to infinity, ϕ (s) converges to a regular function of s in the n half-planeσ>0;thisprovidestheanalyticcontinuationofζ(s) 1/(s 1)for − − σ>0. Nowtheconstanta inthepower-seriesexpansionats=1of 0 1 ζ(s) =a +a (s 1)+a (s 1)2+ − s 1 0 1 − 2 − ··· − isnothingbut lim ϕ (1). Inotherwords, n n →∞ 1 1 a lim 1+ + + logn 0 n 2 ··· n − ! →∞ Kronecker’sLimitFormulas 4 =C(Euler’sconstant). Proposition1isthusproved. 4 TheconstantC liesbetween0and1. Itisnotknownwhetheritisrational orirrational;veryprobably,itisirrational. Onecoulddeterminetheconstantsa ,a ,...alsoexplicitlybutthisismore 1 2 complicated. We shall consider now an analogous problem leading to the Kronecker limitformula(KroneckerscheGrenzformle). Insteadofthesimplelinearfunction x, weconsiderapositive-definitebi- nary quadratic form Q(u,v) = au2 +2buv+cv2 in the real variables u and v and with real coefficients a, b, c (we then have a > 0 and ac b2 = d > 0). − AssociatedwithQ(u,v),letusdefine ∞ ζ (s)= (Q(m,n)) s, (4) Q − m,Xn= −∞ where denotessummationoverallpairsofintegers(m,n),except(0,0). ′ Q(uP,v)beingpositive-definite,thereexistsarealnumberλ > 0,suchthat Q(u,v) λ(u2 + v2) and it is an immediate consequence that the series (4) ≥ converges absolutely for σ > 1 and uniformly in every half-plane defined by σ 1+ǫ(ǫ >0). Thusζ (s)isaregularfunctionofs,forσ>1. Q ≥ As in the case of ζ(s) above, we shall obtain an analytic continuation of ζ (s)regularinthehalf-planeσ>1/2,exceptforasimplepoleat s=1. The Q constanta intheexpansionats=1ofζ (s),viz. 0 Q a ζQ(s)= s −11 +a0+a1(s−1)+··· − isgiven preciselybytheKronecker limitformula. Theconstanta whichis 1 theresidueofζ (s)ats=1wasfoundbyDirichletinhisinvestigat−ionsonthe Q class-numberofquadraticfields. Letusfirsteffectsomesimplifications. 5 SinceQ(u,v)= Q( u, v),weseethat − − ζ (s)=2 ∞ (Q(m,0)) s+2 ∞ ∞ (Q(m,n)) s. (5) Q − − Xm=1 Xn=1mX= −∞ Further b 2 b2 Q(u,v)=a u+ v + c v2 a ! − a ! Kronecker’sLimitFormulas 5 b 2 d b+ √ d b √ d =a u+ v + v2 =a u+ − v u+ − − v a ! a  a  a  =a(u+zv)(u+zv)    wherearg(√ d)=π/2andz=(b+ √ d)/a= x+iywithy>0. − − Also,wecould,withoutlossofgenerality,supposethatd =1;ifQ (u,v)= 1 (1/√d)(au2+2buv+cv2) = a u2+2b uv+c v2,thenζ (s) = ds/2ζ (s)and 1 1 1 Q1 Q a c b2 = 1. Thefunction ds/2 (choosing afixed branch) isasimpleentire 1 1 − 1 function of s and therefore, to study ζ (s), it is enough to consider ζ (s). Q Q1 Thenwehavea=y 1andQ(u,v)=y 1(u+zv)(u+zv)=y 1u+zv2. Now(5) − − − | | becomes ∞ ∞ ∞ ζ (s)=2ys m 2s+2ys m+nz 2s Q − − | | Xm=1 Xn=1mX= −∞ ∞ ∞ =2ysζ(2s)+2ys m+nz 2s (6) − | | Xn=1mX= −∞ WeknowfromProposition1thatζ(2s)hasananalyticcontinuationinthe half-plane σ > 0, regular except for a simple pole at s = 1/2. To obtain an analytic continuation for ζ (s), we have, therefore, only to investigate the Q natureofthesecondtermontherighthandsideof (6),asafunctionof s. For thispurpose,weneedthePoissonsummationformula. Proposition 2. Let f(x) be continuous in ( , ) and let ∞ f(x+m) be −∞ ∞ m= uniformlyconvergentin0 x 1. Then P−∞ ≤ ≤ ∞ ∞ f(x+m)= ∞ e 2πikx f(ξ)e2πikξdξ. − Z mX= kX= −∞ −∞ −∞ 6 Proof. The function ϕ(x) = ∞ f(x+m) is continuous in ( , ) and pe- m= −∞ ∞ riodicin x, ofperiod1. Ifa =P−∞1ϕ(ξ)e2πikξdξ then, byFe´je´r’sTheorem, the k 0 R (C,1)sumof ∞ a e 2πikxisequaltoϕ(x).Inparticular,if ∞ a converges, k − k k= k= | | thenforxin( P−∞, ) P−∞ −∞ ∞ 1 ∞ f(x+m)=ϕ(x)= ∞ e 2πikx ϕ(ξ)e2πikξdξ. − Z mX= kX= 0 −∞ −∞ Kronecker’sLimitFormulas 6 Inviewoftheuniformconvergenceof ∞ f(x+m)in0 x 1, m= ≤ ≤ P−∞ 1 1 ∞ f(ξ+m)e2πikξdξ = ∞ f(ξ+m)e2πikξdξ Z Z 0 mX= mX= 0 −∞ −∞ = ∞ f(ξ)e2πikξdξ. Z −∞ Thus ∞ f(x+m)= ∞ e 2πikx ∞ f(ξ)e2πikξdξ, (7) − Z mX=−∞ kX=−∞ −∞ whichisthePoissonsummationformula. Now we set f(x) = x + iy 2s = z 2s for x in ( , ). Then we see − − | | | | −∞ ∞ thattheseries ∞ m+z 2sconvergesabsolutely,uniformlyineveryinterval − m= | | N x N,foPr−∞σ > 1/2. Forthispurpose,itclearlysufficestoconsiderthe − ≤ ≤ interval0 x 1,sincetheseriesremainsunchangedwhen xisreplacesby ≤ ≤ x+1. For0 x 1, ≤ ≤ ∞ m+z 2s ∞ m+z 2σ (cid:12) − (cid:12) − (cid:12)(cid:12)mX= | | (cid:12)(cid:12)≤mX= | | (cid:12)(cid:12) −∞ (cid:12)(cid:12) −∞ (cid:12)(cid:12) z 2σ+ z 1(cid:12)(cid:12) 2σ+ ∞ (m 2σ+m 2σ) − − − − ≤| | | − | Xm=1 <2y 2σ+2 ∞ m 2σ σ> 1 . − − 2! Xm=1 (cid:3) 7 Thus,by(7),forσ>1/2, ∞ m+z 2s = ∞ e 2πikx ∞ ξ+iy 2se2πikξdξ − − − | | Z | | mX=−∞ kX=−∞ −∞ = ∞ e 2πikx ∞(ξ2+y2) se2πikξdξ − − Z kX=−∞ −∞ =y1 2s ∞ e 2πikx ∞(1+ξ2) se2πikξdξ, (8) − − − Z kX=−∞ −∞ whenever the series (8) converges. Actually, we shall prove that it converges absolutely for σ > 1/2. For this purpose, let us consider for k > 0, ∞(1+ R−∞

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.