On a certain type of nonlinear hyperbolic 6 equations derived from astrophysical problems 1 0 2 Tetu Makino ∗ n a February 2, 2016 J 0 3 ] Abstract P A Investigationsofsphericallysymmetricmotionsofself-gravitatinggaseous starsgovernedbythenon-relativisticNewtoniangravitationtheoryorby . h the general relativistic theory lead us to a certain type of non-linear hy- t perbolic equations defined on a finite interval of the space variable. The a m linearized principal part has regular singularities at the both ends of the interval of the space variable. But the regularity loss caused by the sin- [ gularities at the boundaries requires application of the Nash-Moser tech- 1 nique. An abstract unified treatment of theproblem is presented. v 8 KeyWordsandPhrases. Non-linearhyperbolicequations,Nash-Moser 6 theory,Singular boundary,Time periodic solutions, Cauchy problems. 1 2010MathematicsSubjectClassificationNumbers. 35L70,35Q31,35Q85. 0 0 . 1 Introduction 2 0 6 We have investigated spherically symmetric motions of gaseous stars governed 1 by the non-relativistic Euler-Poisson equations in [5] and by the relativistic : v Einstein-Euler equations in [6]. See also [7] on the problem governed by the i Einstein-Euler-de Sitter equations with the cosmologicalconstant. In this arti- X cle a unified formulation of the discussions developed in the previous works is r a presented. This treatment using the Nash-Moser theorem is based on the work [4]. Let us begin by giving an abstract settlement of the problem. The set of equations we consider is ∂y J(x,y,z)v =0, (1a) ∂t − ∂v +H (x,y,z,v) y+H (x,y,z,v,w)=0 (1b) 1 2 ∂t L with ∗ProfessorEmeritusatYamaguchiUniversity,Japan/e-mail: [email protected] 1 d2 5 N d d = x(1 x) (1 x) x +ℓ (x)x(1 x) +L (x). (2) L − − dx2 − 2 − − 2 dx 1 − dx 0 (cid:16) (cid:17) ∂y ∂v Herexrunsonthe interval]0,1[andz =x ,w =x . N isaparameterand ∂x ∂x we put the assumption (B0): N >4. Let us denote by A the set of all functions defined and analytic on a neigh- borhood of [0,1]. Let us denote by AQ(Up) the set of all analytic functions f(x,y , ,y )ofxinaneighborhoodof[0,1]andy ,y inaneighborhood 1 p 1 p ··· ··· U of 0 such that f(x,y , ,y )= a (x)yk1 ykp. 1 ··· p k1···kp 1 ··· p k1+··X·+kp≥Q We put (B1): We suppose ℓ ,L A and there is a neighborhood U of 0 such that 1 0 ∈ J A0(U2), H A0(U3), H A2(U4). 1 2 ∈ ∈ ∈ LetusfixT >0arbitrarilyandfixfunctionsy ,v C ([0,T] [0,1])such ∗ ∗ ∞ ∈ × that y (t,x),z (t,x) = x∂y /∂x,v (t,x),w (t,x) = x∂v /∂x U for 0 t ∗ ∗ ∗ ∗ ∗ ∗ ∈ ≤ ∀ ≤ T,0 x 1. We seek a solution y,v C ([0,T] [0,1]) of (1a)(1b) of the ∞ ≤ ∀ ≤ ∈ × form y =y∗+y˜, v =v∗+v˜ (3) which satisfies y˜ =0, v˜ =0. (4) t=0 t=0 | | We suppose the following assumptions: (B2): We have H (x,0,0,0)=J(x,0,0) 1 (5) 1 − and there is a constant C >1 such that 1 <J(x,0,0)<C (6) C for x U . 0 ∀ ∈ (B3): We have ∂ J 0, (∂ H ) y+∂ H 0, ∂ H 0 (7) z z 1 z 2 w 2 ≡ L ≡ ≡ as x 1. → 2 Here a function f defined and analytic on a neighborhood of (1,0, ,0) is ··· said to satisfy f 0 as x 1 if there is a function Ω defined and analytic on a ≡ → neighborhood of (1,0, ,0) such that ··· f(x,y , ,y )=(1 x)Ω(x,y , ,y ). 1 p 1 p ··· − ··· Of course it is the case if f(1,y , ,y ) = 0 for y , , y . In the assump- 1 p 1 p ··· ∀ ··· ∀ tion (B3) the functions in (7) are regardedas functions of x,y,Dy,D2y,v,Dv. Here D stands for ∂/∂x. Under the above situation, we are going to prove the following Theorem 1 There is a small positive number δ(T) and a large number K such that, if j+mkaxKk∂tj∂xk(y∗,v∗)kL∞ ≤δ(T), (8) ≤ there exists a solution (y,v) of (1a)(1b)(3)(4). 2 Frame-work to apply the Nash-Moser(-Hamilton) theorem The equations for w:=(y˜,v˜)T turn out to be ∂y˜ Jv˜ (∆J)v =c , (9a) ∗ 1 ∂t − − ∂v˜ +H y˜+(∆H ) y +∆H =c , (9b) 1 1 ∗ 2 2 ∂t L L where ∂y˜ J =J(x,y +y˜,z +z˜) with z˜=x ∗ ∗ ∂x ∆J =J(x,y +y˜,z +z˜) J(x,y ,z ), ∗ ∗ ∗ ∗ − ∂y ∗ c1 = +J(x,y∗,z∗)v∗, − ∂t ∂v˜ H1 =H1(x,y∗+y˜,z∗+z˜,v∗+v˜,w∗+w˜) with w˜ =x , ∂x ∆H1 =H1(x,y∗+y˜,z∗+z˜,v∗+v˜) H1(x,y∗,z∗,v∗), − ∆H =H (x,y +y˜,z +z˜,v +v˜,w +w˜) H (x,y ,z ,v ,w ), 2 2 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ − ∂v ∗ c = H (x,y ,z ,v ) y H (x,y ,z ,v ,w ). 2 1 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ − ∂t − L − We write the equations (9a)(9b) as P(w)=c, (10) 3 wherec=(c ,c )T. The domainofthe nonlinearmapping P is U,the setofall 1 2 functions w=(y˜,v˜)T E E such that 0 0 ∈ × y˜ + xDy˜ + v˜ + xDv˜ <ǫ , (11) 0 | | | | | | | | where D = ∂/∂x. Here ǫ is so small that (11) implies y(t,x) = y (t,x)+ 0 ∗ y˜(t,x),z = xDy,v,w = xDv U for t [0,T], x U . We have defined 0 ∈ ∀ ∈ ∀ ∈ E=C ([0,T] [0,1]) and E = φ E φ =0 . ∞ 0 t=0 × { ∈ | | } We are going to apply the Nash-Moser(-Hamilton) theorem ([1, p. 171, III.1.1.1]). First we introduce gradings of norms on E to make it a tame space in the sense of Hamilton [1]. To do so, we use a cut off function ω C (R) such that ω(x) = 1 for ∞ ∈ x 1/3, 0 < ω(x) < 1 for 1/3 < x < 2/3 and ω(x) = 0 for 2/3 x. For a ≤ ≤ function u of x [0,1], we define ∈ u[0](x):=ω(x)u(x), u[1](x):=(1 ω(x))u(x). (12) − We consider the functional spaces E = u E u=0 for 5/6 x 1 , (13a) [0] { ∈ | ≤ ≤ } E = u E u=0 for 0 x 1/6 (13b) [1] { ∈ | ≤ ≤ } endowed with the gradings (k·|([µ∞]n))n,(k·k([µ2)]n)n, µ=0,1, defined as follows. Put d2 5 d :=x + , △[0] dx2 2dx and d2 N d :=X + with X =1 x, △[1] dX2 2 dX − and put kuk([µ∞]n) = sup k(−∂t2)j(−△[µ])kukL∞, j+k n ≤ T 1/2 u (2) = ( ∂2)j( )ku 2 dt , k k[µ]n k − t −△[µ] k[µ] (cid:16)j+Xk≤nZ0 (cid:17) where 1 1/2 u = u2x3/2dx , [0] k k | | (cid:16)Z0 (cid:17) 1 1/2 u = u2(1 x)N/2 1dx . [1] − k k | | − (cid:16)Z0 (cid:17) 4 Proposition 1 Let µ = 0 or = 1. The gradings (k · |([µ∞]n))n,(k · k([µ2)]n)n are equivalent and make E a tame space. [µ] Proof. Let us consider E and denote X =1 x by x and by [1] [1] − △ d2 N d =x + . △ dx2 2 dx ( E can be treated similarly.) Then u E means u C ([0,1]) and [0] [1] ∞ ∈ ∈ u(x)=0 for x 5/6. ≥ Now, we can define the Fourier transformation Fu(ξ) of a function u(x) of x [0,+ ) by ∈ ∞ Fu(ξ):= ∞K(ξx)u(x)xN/2 1dx, − Z0 where K(X) is an entire function of X C given by ∈ ∞ ( 4X)k K(X)=2(√X)−N/2+1JN/2−1(4√X)=2N/2 k!Γ(−N/2+k), k=0 X J being the Bessel function of order N/2 1. Note that N/2 1 − − F( u)(ξ)=4ξ Fu(ξ) −△ · and the inverse of F is F itself. Then we see that E endowed with ( ) [1] k·k∞[1]n n is a tame direct summand of the tame space F=L (R [0,+ ),dτ ξN/2 1dξ,log(1+τ2+4ξ)) ∞1 × ∞ ⊗ − through the transformation 1 u(τ,ξ)= e √ 1τtFu(t, )(ξ)dt − − F √2π · Z and its inverse applied to the space E˜ :=C (( 2T,2T) [0,2)), 0∞ − × intowhichtheextensionoffunctionsofE multipliedbyafixedcutofffunction [1] χ(t) which vanishes for t T can be imbedded, and the space ≤− E˙ :=C˙ (R [0,+ )):= u j k lim sup ( ∂2)j( )ku =0 , ∞ × ∞ { | ∀ ∀ L→∞L≤|t|,L≤x| − t −△ | } for which functions of E are restrictions. In fact, if we denote by e:E E˜ [1] [1] → the extension operator, and by r : E˙ E the restriction operator, then the [1] → mappings e : E F and r : F E are tame and the composition [1] [1] F → F → (r ) ( e) is IdE . For the details, see the proof of [1, p.137, II.1.3.6.]. This F ◦ F [1] implies that E[1] is tame with respect to (k·k∞[1])n)n. On the other hand N 2 kuk[1] ≤kukL∞ ≤Csupk(−△)juk[1] r j σ ≤ 5 bytheSobolevimbeddingtheorem(see[4,Appendix]),providedthat2σ >N/2. (Recall ( u )2 = 1 u2xN/2 1dx.) The derivative with respect to t can be k k[1] 0 | | − treated more simply. Thus we see the equivalence R 1 u (2) u (∞) C u (2) Ck k[1]n ≤k k[1]n ≤ k k[1],n+s with 2s>1+N/2. (cid:4) We put kuk(n∞) := sup kuk([µ∞]n), µ=0,1 1/2 u (2) := ( u (2) ) . k kn k k[µ]n (cid:16)µX=0,1 (cid:17) Proposition 2 The gradings ( (n∞))n, ( (n2))n are equivalent and the space k·k k·k E becomes a tame space by these gradings. Proof. In fact E is a tame direct summand of the Cartesian product E [0] × E , which is a tame space, (see [1, p.136, 1.3.1. and 1.3.4]), by the linear [1] mapping L : E E E : u (u[0],u[1]) and M : E E E : [0] [1] [0] [1] → × 7→ × → (u0,u1) u0+u1. Clearly L is tame and ML = IdE. To verify the tameness 7→ ofM, we note that, if the supportof a function u is included in [1/6,5/6],then k△m[µ]ukL∞ ≤C k△k[1−µ]ukL∞. 0 k m ≤X≤ A proof can be found in [5, Appendix B]. If h E for µ = 0,1, then µ [µ] ∈ h=M(h ,h )=h +h and h[0] =ω h +ω h . Then by [4, Proposition 4] 0 1 0 1 0 1 · · we have k△m[0]h[0]kL∞ ≤C k△k[0]h0kL∞ +k△m[0](ω·h1)kL∞ k m X≤ ≤C k△k[0]h0kL∞ +C′ k△k[1](ω·h1)kL∞ k m k m X≤ X≤ ≤C k△k[0]h0kL∞ +C′′ k△k[1]h1kL∞, k m k m X≤ X≤ sincethe supportofω h isincludedin[1/6,2/3]. Similarlywe getanestimate 1 · |d△irm[e1c]ht[s1u]kmL∞m.anTd.he(cid:4)se estimates imply the tameness of M. Thus E is a tame Then E E is a tame space as the Cartesian product of the tame space E × and its copy. Let us denote kwk(n∞) =max(ky˜k(n∞),kv˜k(n∞)), 1/2 w (2) = ( y˜ (2))2+( v˜ (2))2 . k kn k kn k kn (cid:16) (cid:17) 6 Then we can claim Proposition 3 If 2s>1+max(N,5)/2, then we have 1 w (2) w ( ) C w (2) . Ck kn ≤k kn∞ ≤ k kn+s SinceP(w)isasmoothfunctionoft,x,y˜[0],y˜[1],Dy˜[0],Dy˜[1], y˜[0], y˜[1], [0] [1] △ △ v˜[0],v˜[1],Dv˜[0],Dv˜[1], ∂ y˜[0],∂ y˜[1],∂ v˜[0],∂ v˜[1],thanksto [4,Proposition3,4,5] t t t t we see kP(w)k(n∞) ≤C(1+kwk(n∞+)1), that is, P is a tame mapping from U E E into E E. 0 0 ⊂ × × Besides these gradings, we shall use another gradings. Namely, we put ( )mu for ℓ=2m u := k △[µ] k[µ] h i[µ]ℓ ( D˙[µ]( [µ])mu [µ] for ℓ=2m+1, k △ k where µ=0,1, and d d D˙ =√x , D˙ =√X with X =1 x, [0] dx [1] dX − and for h=(h,k)T we put 1/2 h := ( h )2+( k )2 , [µ]k [µ],ℓ+1 [µ]ℓ k k h i h i (cid:16)0≤Xℓ≤k (cid:17) khk[hµτ]in := sup k∂tjh(t,·)k[µ]k, 0 t τ ≤ ≤ j+Xk≤n T 1/2 h := ( ∂jh )2dt , |k k|[µ]n k t k[µ]k (cid:16)j+Xk≤nZ0 (cid:17) 1/2 h := ( h[0] )2+( h[1] )2 , k [0]k [1]k k k k k k k (cid:16) (cid:17)1/2 khknhτi := (kh[0]kh[0τ]in)2+(kh[1]kh[1τ]in)2 , (cid:16) (cid:17) 1/2 h := ( h[0] )2+( h[1] )2 . n [0]n [1]n |k k| |k k| |k k| (cid:16) (cid:17) Thanks to [4, Proposition 7] and the Sobolev’s imbedding with respect to t we can claim Proposition 4 For any non-negative integer m, we have 1 h h T C h C|k k|n ≤k khn i ≤ |k k|n+1 and 1 h (2) h C h (2). Ck km ≤|k k|2m ≤ k km 7 Moreover we put |h|n :=j+kmna,µx=0,1k∂tj(D˙[µ])kh[µ]kL∞, ≤ h τ := sup h(t) . | |nh i | |n 0 t τ ≤ ≤ By interpolations, we can claim Proposition 5 For any non-negative integer m we have 1 Ckhk(m∞) ≤|h|h2Tmi ≤Ckhk(m∞). 3 Analysis of the Fr´echet derivative I We have to analyze the Fr´echetderivative DP(w) of the mapping P at a given w=(y˜,v˜)T U. For h=(h,k)T we have DP(w)h=((DP) ,(DP) )T, where 1 2 ∈ ∂h ∂ (DP) = Jk (∂ J)v+(∂ J)vx h, 1 y z ∂t − − ∂x ∂k (cid:16) (cid:17) (DP) = +H h+ 2 1 ∂t L ∂ + (∂ H ) y+∂ H +((∂ H ) y+∂ H )x h+ y 1 y 2 z 1 z 2 L L ∂x (cid:16) ∂ (cid:17) + (∂ H ) y+∂ H +(∂ H )x k. v 1 v 2 w 2 L ∂x (cid:16) (cid:17) Thankstotheassumption(B3)thereareanalyticfunctionsa ,a ,a ,a ,a ,a 01 00 11 10 21 20 ofx,y(=y +y˜),Dy,D2y,v(=v +v˜),Dv,whereD =∂/∂x,onaneighborhood ∗ ∗ of [0,1] 0 0 such that ×{ }×···×{ } ∂h (DP) = Jk+(a x(1 x)D+a )h, (14a) 1 01 00 ∂t − − ∂k (DP) = +H h+(a x(1 x)D+a )h+ 2 1 11 10 ∂t L − +(a x(1 x)D+a )k. (14b) 21 20 − We put X:=L2([0,1];x3/2(1 x)N/2 1dx), − − dφ X1 := φ X D˙φ:= x(1 x) X , { ∈ | − dx ∈ } X2 := φ X1 ΛφpX , { ∈ | − ∈ } with d2 5 N d Λ=x(1 x) + (1 x) , (15) − dx2 2 − − 2 dx (cid:16) (cid:17) We claim 8 Proposition 6 Given g C([0,T],X1 X), the equation DP(w)h=g admits ∈ × a unique solution h C([0,T],X2 X1) such that h(t=0)=(0,0)T. ∈ × Proof. We can rewrite ∂k (DP) = H Λh+b Dˇh+b h+a Dˇk+a k, 2 1 1 0 21 20 ∂t − where Dˇ :=x(1 x)D, − b :=H ℓ +a , 1 1 1 11 b :=H L +a . 0 1 0 10 Of course b ,b are also analytic on a neighborhood of [0,1] 0 . Then 1 0 ×{ }×··· we can write the equation DP(w)h=g(=(g ,g )T) as 1 2 ∂ h a J h g + 1 − = 1 . (16) ∂t k a2 k g2 (cid:20) (cid:21) (cid:20)A (cid:21)(cid:20) (cid:21) (cid:20) (cid:21) Here a =a Dˇ +a , 1 01 00 a :=a Dˇ +a , 2 21 20 := H Λ+b Dˇ +b . 1 1 0 A − The standard calculation gives 1 d k 2+((H /J)D˙hD˙h) + 1 2dt k k | +(β(cid:16)D˙hD˙h)+(β D˙hh)+((cid:17)β D˙hk)++(β hk)+(β k k)= 1 2 3 4 5 | | | | | =((H /J)D˙hD˙g )+(k g ), (17) 1 1 2 | | where D˙ = x(1 x)D and − 1 p 1∂(H /J) β = (3+(N +3)x+2Dˇ)(H /J)a 1 +(H /J)(Dˇa +a ), 1 1 01 1 01 00 −4 − 2 ∂t β =(H /J)D˙a , 2 1 00 β = (H /J)D˙J +D˙H + x(1 x)(b +a ), 3 1 1 1 21 − − β4 =b0, β5 =a20. p Ofcourse ( ) and standfor the inner product andthe normof the Hilbert ·|· k·k space X. We have used the following formulas: Formula 1: If φ X2,ψ X1,α C1([0,1]), then ∈ ∈ ∈ ( αΛφψ)=(αD˙φD˙ψ)+((Dα)Dˇφψ). (18) − | | | 9 Formula 2: If φ X2 and α C1([0,1]), then ∈ ∈ (αD˙φD˙Dˇφ)=(α D˙φD˙φ), (19) ∗ | | with 1 α∗ = (3+(N +3)x+2Dˇ)α. −4 Since w is confined to U, we can assume 1 1 <J <M , <H <M 0 1 0 M M 0 0 witha constantM independentofw thanks to the assumption(B2). Now the 0 energy := k 2+((H /J)D˙hD˙h) 1 E k k | enjoys the inequality 1d E M( h 2H+ h H g H), 2 dt ≤ k k k k k k where H=X1 X and × (φ,ψ)T 2 = φ 2 + ψ 2 = φ 2+ D˙φ 2+ ψ 2 k kH k kX1 k kX k k k k k k and 5 M = βj L∞ +(M0)2+1. k k j=1 X Since is equivalent to k 2+ D˙h 2, the Gronwall argument and application E k k k k of the Kato’s theory ([2]) deduce the conclusion. Here h should be estimated k k by as follows: The first component of (16) implies E t h(t)= ( a Dˇh a h+Jk+g )(t)dt, 01 00 1 ′ ′ − − Z0 therefore t t h(t) C h(t) dt + (C (t )+ g (t) )dt, ′ ′ ′ 1 ′ ′ k k≤ k k E k k Z0 Z0 whereC =max(ka00kL∞,ka01kL∞M02+M0),whichimplies,throughthe Gron- wall’s argument, t h(t) (eC(t t′) 1)(C (t)+ g (t) )dt. − ′ 1 ′ ′ k k≤ − E k k Z0 10