ResearchinAstronomyandAstrophysicsmanuscriptno. (LATEX: 0253.tex; printedonJanuary18,2017; 1:16) 7 1 Observations and light curve solutions of the W UMa binaries 0 2 V796 Cep, V797 Cep, CSS J015341.9+381641 and NSVS 3853195 n a J 7 D.P.Kjurkchieva1,V.A.Popov1,2,S.I.Ibryamov1,D.L.Vasileva1,N.I.Petrov3 1 ] R 1 DepartmentofPhysics,ShumenUniversity,115UniversitetskaStr.,9712Shumen,Bulgaria; S . [email protected] h p 2 IRIDAObservatory,RozhenNAO,Bulgaria - o 3 InstituteofAstronomyandNAO,BulgarianAcademyofSciences,72TsarigradskoShoseBlvd.,1784 r t s Sofia,Bulgaria a [ Received;ccepted 1 v 8 2 7 AbstractPhotometricobservationsin Sloan g’andi’ bandsoffourW UMabinaries,V796 4 0 Cep,V797Cep,CSSJ015341.9+381641andNSVS3853195,arepresented.Ourobservations . 1 showed that CSS J015404.1+382805and NSVS 3853195are the same star. We determined 0 7 theinitialepochsT0ofalltargetsandimprovedtheperiodofNSVS3853195.Thelightcurve 1 : solutionsofourdatarevealedthatthecomponentsofeachtargetarealmostthesameinmass, v i temperature,radiusandluminosity.ThestellarcomponentsareofGandKspectraltypesand X r undergopartialeclipses.Allsystemshavebarely-overcontactconfigurationsandbelongtoH a subtypeWUMabinaries.Weestablishedthattherelationbetweentheluminosityratiol2/l1 andmassratioqofourtargetsisapproximatelyl2/l1 =q1.5. Key words: stars: binaries: eclipsing; stars – fundamental parameters; stars – individual (V796Cep,V797Cep,CSSJ015341.9+381641,NSVS3853195) 2 Kjurkchievaetal. 1 INTRODUCTION The creation of stellar evolutional scheme requires a knowledge of the fundamental parameters of stars in different stages of their evolution. Eclipsing binary systems, especially W UMa binaries, are the most importantsourcesofsuchinformation.Itissupposedthattheyareresultfromtheevolutionofwidebinaries by angular momentum loss and mass-ratio reversals (Stepien 2006, Qian 2003). Around 25 % of main- sequencestarbinarieshaveseparationssmallenoughsowhentheirprimariesascendthegiantbranch,mass transfervia Roche-lobeoverflowputsthe beginingofa commonenvelopephase(Willems & Kolb 2004). Atthisstagethetwostarsorbitwithinasingleenvelopeofmaterial,quicklylosingangularmomentumand spiralingtowardseachother(Webbink1984;Ivanovaetal.2013).Thecommon-envelopephaseisprobably ashort-livedstagethatendsbyenvelopeejectionandatighterbinaryorbyamerger.Butunderstandingof commonenvelopestageremainsoneofthemostimportantunsolvedproblemsinstellarevolution(Ivanova etal.2013). The components in a W UMa system have nearly equal surface temperatures in spite of their often greatlydifferentmasses(Binnendijk1965).ThemodelofLucy(1968b),Lucy(1968a)explainedthiseffect by a common convective photosphere which embedded two main sequence stars. As a result one should expect the observable luminosities to have another dependence on the mass ratio than would be the case of two main sequence stars in detached configuration.The conditionfor equalsurface temperaturesleads tospecificperiod-luminosity-color(PLC)relationsofWUMastars(Rucinski1994,Rucinski&Duerbeck 1997)allowingcurrentlytopredicttheirabsolutemagnitudesM toabout0.25mag(Rucinski2004).The V PLCrelationscombinedwiththeeasedetectionmakethesebinariesusefultracersofdistance(Klagyivik& Csizmadia2004;Getteletal.2006;Ekeretal.2009).Moreover,theWUMastarsareimportanttargetsfor themodernastrophysicsbecausetheygiveinformationfortheprocessesoftidalinteractions,masslossand masstransfer,angularmomentumloss,mergingorfusionofthestars(Martinetal.2011). In this paper we present photometric observations and light curve solutions of four W UMa bi- naries: V796 Cep (GSC 04502-00138, TYC 4502-138-1), V797 Cep (GSC 04502-01040, 2MASS J01424764+8007522),CSSJ015341.9+381641,NSVS3853195(CSSJ015404.1+382805).Table1presents thecoordinatesofourtargetsandavailableinformationfortheirlightvariability. LightcurvesolutionsoffourWUMabinaries 3 Table1 ParametersofourtargetsfromtheVSXdatabase Target RA Dec Period V Amplitude Type [d] [mag] [mag] V796Cep 014136.39 +800419.1 0.3929661 12.20 0.65 EW V797Cep 014247.64 +800752.3 0.270416 14.60 0.40 EW CSSJ015341.9+381641 015341.95 +381641.1 0.347518 13.47 0.40 EW NSVS3853195 015404.05 +382805.2 0.29253 13.52 0.39 EW Table2 Journalofourphotometricobservations Target Date Exposureg′ Exposurei′ Numberg′ Numberi′ V796Cep,V797Cep 2015Oct25 90 120 125 125 2015Oct26 90 120 84 82 2015Oct27 90 120 60 59 2015Oct28 90 120 146 146 CSSJ015341.9+381641,NSVS3853195 2015Nov07 60 90 85 84 2015Nov08 60 90 67 75 2015Nov11 60 90 84 84 2015Nov12 60 90 43 42 2015Nov13 60 90 84 85 2 OBSERVATIONS OurCCDphotometricobservationsofthetargetsinSloang’,i’bandswerecarriedoutatRozhenNational AstronomicalObservatorywiththe30-cmRitchey-Chre´tienAstrograph(locatedintotheIRIDASouthdome) using CCD camera ATIK 4000M (2048 × 2048 pixels, 7.4 µm/pixel, field of view 35 × 35 arcmin). Informationfor ourobservationsis presentedin Table 2. In fact, the pairsV796Cep, V797Cep andCSS J015341.9+381641,NSVS3853195fallontwoobservedfields(seecoordinatesinTable1). Thedatawereobtainedduringphotometricnightswithseeingwithin1.1–1.9arcsecandhumiditybelow 70%.Twilightflatfieldswereobtainedforeachfilter,darkandbiasframeswerealsotakenthroughoutthe run.Theframeswerecombinedrespectivelyintoasinglemasterbias,darkandflatframes.Thestandardpro- cedurewasusedforreductionofthephotometricdata(de-biasing,darkframesubtractionandflat-fielding) bysoftwareAIP4WIN2.0(Berry&Burnell2006). 4 Kjurkchievaetal. Table3 Listofthestandardstars Label StarID RA Dec g’ i’ Target1 V0796Cep 014136.39 +800419.10 12.320 11.789 Target2 V0797Cep 014247.64 +800752.30 14.966 14.025 Chk UCAC4851-002007 014116.52 +800421.76 13.755(0.010) 13.018(0.010) C1 UCAC4851-002085 014507.01 +801045.03 13.238(0.011) 12.534(0.011) C2 UCAC4851-002011 014128.03 +801118.42 13.870(0.010) 13.351(0.012) C3 UCAC4851-002002 014056.97 +800414.51 13.448(0.009) 12.844(0.010) C4 UCAC4851-002062 014356.73 +800208.49 14.205(0.011) 13.452(0.013) C5 UCAC4850-002063 014151.38 +795658.55 13.257(0.007) 12.651(0.009) C6 UCAC4851-002028 014225.41 +800100.68 13.898(0.009) 13.058(0.009) Target3 CSSJ015341.9+381641 015341.95 +381641.10 13.897 13.117 Target4 NSVS3853195 015404.05 +382805.26 14.054 13.178 Chk UCAC4643-007188 015430.68 +382900.15 13.104(0.014) 11.754(0.009) C1 UCAC4644-007104 015412.54 +383649.06 13.975(0.016) 13.902(0.018) C2 UCAC4643-007165 015404.61 +383554.88 14.112(0.011) 13.419(0.015) C3 UCAC4643-007180 015423.95 +383542.60 14.061(0.014) 13.369(0.015) C4 UCAC4643-007204 015450.23 +383352.57 13.971(0.019) 13.147(0.015) C5 UCAC4643-007182 015426.03 +382938.62 13.720(0.009) 13.012(0.011) C6 UCAC4643-007126 015326.47 +383002.18 13.702(0.016) 12.978(0.013) C7 UCAC4642-006881 015412.52 +382356.10 13.937(0.012) 12.907(0.011) C8 UCAC4642-006842 015330.38 +382034.86 13.929(0.024) 13.071(0.018) C9 UCAC4642-006908 015436.06 +382004.67 14.068(0.013) 11.491(0.014) C10 UCAC4642-006921 015446.30 +381935.13 13.161(0.021) 11.764(0.014) C11 UCAC4643-007147 015351.89 +382810.11 12.849(0.018) 12.191(0.014) We usedaperturephotometrywithradiusof1.5FWHM ofthe starimage,alongwithskybackground measurementswith annuli enclosing a comparable area. The light variability of the targets was estimated withrespectto nearbycomparison(constant)starsinthe observedfieldofeachtarget,socalledensemble photometry.Acheckstarservedtodeterminetheobservationalaccuracyandtocheckconstancyofthecom- parisonstars.TheCCDensemblephotometrycalculatesthedifferencebetweentheinstrumentalmagnitude ofthetargetandacomparisonmagnitudeobtainedfromthemeanoftheintensitiesofthecomparisonstars. The use of numerouscomparison stars scattered over the CCD field increases considerably the statistical accuracyofthecomparisonmagnitude(Gilliland&Brown1988,Honeycutt1992). LightcurvesolutionsoffourWUMabinaries 5 0.99 c2 0.98 1.6 0.97 1.4 1.2 q 0.96 1.0 0.95 0.94 0.93 69.0 69.5 70.0 70.5 71.0 71.5 i Fig.1 Illustrationoftheq-searchanalysisforV796Cep:thedifferentisolinescircumscribethe areaswhosenormalizedχ2 aresmallerthanthemarkedvalues;theemptycirclecorrespondsto thefinalvalueofthemassratioandorbitalinclinationgiveninTable5. WeperformedtheensembleaperturephotometrywiththesoftwareVPHOT.Table3presentsthecoor- dinatesofthecomparisonandcheckstarsofourtargetsfromthecatalogueUCAC4(Zachariasetal.2013) and their magnitudesfrom the catalogue APASS DR9 (Henden 2016). The values in brackets correspond to the standarddeviationsof the standardstars duringthe observationalnights. The choiceof comparison andcheckstarsinthesamefieldofviewofthetargetsmeanspracticallyequalextinctionsforallstars.The transformationoftheobtainedinstrumentalmagnitudestostandardoneswasmademanually.Forthisaim weusedthemeancoloroftheensemblecomparison-star(g′−i′) andtransformationcoefficientsofour comp equipment(calculated earlier using standardstar field M67). The calculated correctionsof the instrumen- talmagnitudesforourtargetswerefrom−0.0008magto0.0003maging′ filter(withintheobservational precision)andfrom−0.0258magto0.0085magini′filter. We determined the times of the individualminima (Table 4) by the method of Kwee & van Woerden (1956). 3 LIGHTCURVESOLUTIONS ThelightcurvesofourtargetsweresolvedbythecodePHOEBE (Prsa&Zwitter2005).Itisbasedonthe Wilson–Devinney(WD)code(Wilson& Devinney1971,Wilson1979)butalso providesa graphicaluser 6 Kjurkchievaetal. 13.6 V796Cep V797Cep 11.6 14.0 i' 12.0 i' 14.4 es es14.8 d12.4 d u u nit g' nit g' g g Ma Ma15.2 12.8 15.6 13.2 16.0 13.6 16.4 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Phase Phase 12.8 12.8 CSSJ015341.9+381641 NSVS3853195 13.2 13.2 i' i' 13.6 13.6 s s e e14.0 d d nitu14.0 g' nitu g' g g Ma Ma14.4 14.4 14.8 14.8 15.2 15.2 15.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Phase Phase Fig.2 Thefoldedlightcurvesofthetargetswiththeirfitsandthecorrespondingresiduals(shifted verticallybydifferentamounttosavespace). interface and modeling in Sloan filters of our observations.We used the traditionalconventionthe Min. I (phase0.0)tobethedeeperlightminimumandthestarthatiseclipsedatMin.Itobeaprimarycomponent. MeantemperaturesT ofthebinariesweredeterminedinadvance(seeTable6further)onthebasisof m theirinfraredcolorindices(J-K)fromthe2MASScatalogandthecalibrationcolor-temperatureofTokunaga (2000). The preliminary runs revealed that all targets are overcontact systems. Hence, we applied mode LightcurvesolutionsoffourWUMabinaries 7 Fig.3 3Dconfigurationsofthetargets Table4 Timesofminimaofourtargets Target Min.I Min.II IRIDAcycle V0796Cep 2457321.43582(9) - 0.0 - 22457322.41776(13) 2.5 2457323.40045(19) - 5.0 - 2457324.38263(8) 7.5 2457324.57929(1) - 8.0 V0797Cep 2457321.31715(74) - 0.0 - 2457321.45201(25) 0.5 2457321.58629(22) - 1.0 - 2457322.26135(33) 3.5 2457322.39815(24) - 4.0 - 2457323.34511(22) 7.5 2457324.29034(18) - 11.0 - 2457324.42626(3) 11.5 CSSJ015341.9+381641 - 2457333.44320(11) -0.5 2457333.61496(31) - 0.0 - 2457334.48599(14) 2.5 2457338.47982(18) - 14.0 - 2457340.39396(31) 19.5 2457340.56578(15) - 20.0 NSVS3853195 - 2457333.44266(9) -0.5 2457333.59001(21) - 0.0 2457334.46774(15) - 3.0 - 2457338.41610(11) 16.5 2457338.56296(13) - 17.0 2457339.44062(12) - 20.0 - 2457340.46366(14) 23.5 8 Kjurkchievaetal. ”Overcontact binary not in thermal contact” of the code. Firstly we fixed T1 = Tm and varied the initial epoch T0 and period P to search for fitting the phases of light minima and maxima. After that we fixed their values and varied simultaneously secondary temperature T2, orbital inclination i, mass ratio q and potentialΩtosearchforreproducingofthewholelightcurves.Thedataini’andg’bandsweremodelled simultaneously. We adopted coefficients of gravity brightening g1 = g2 = 0.32 and reflection effect A1 = A2 = 0.5 appropriateforlate-typestarswhilethelinearlimb-darkeningcoefficientsforeachcomponentandeachcolor were updatedaccordingto the tablesofvanHamme(1993).Solarmetallicity wasassumedforthe targets becausetheyconsistoflatestarsfromthesolarvicinity.Inordertoreproducethelightcurvedistortionswe usedcoolspotswhoseparameters(longitudeλ,angularsizeαandtemperaturefactorκ)wereadjusted. After reaching the best solution we varied together all parameters (T2, i, q, Ω, T0 and P) around the valuesfromthelastrunandobtainedthefinalmodel.InordertodeterminestellartemperaturesT1 andT2 aroundthemeanvalueT weusedtheformulae(Kjurkchievaetal.2016b): m ∆T T1 =Tm+ , (1) c+1 T2 =T1−∆T, (2) wherec=l2/l1(luminosityratio)and∆T =Tm−T2PH weretakenfromthelastPHOEBEfitting. AlthoughPHOEBE (asWD)workswithpotentials,itgivesapossibilitytocalculateallvalues(polar, point, side, and back) of relative radius r = R /a of each component (R is linear radius and a is or- i i i bitalseparation).Intheabsenceofradialvelocitycurvesweputasdefaulta=1becausefromphotometry onlywe cannotdeterminebinaryseparation.Moreover,PHOEBE yieldsasoutputparametersbolometric magnitudesMi ofthetwo componentsinconditionalunits(whenradialvelocitydataarenotavailable). bol Buttheir differenceM2 −M1 determinesthetrue luminosityratio c = L2/L1 = l2/l1.Filloutfactor bol bol f =[Ω−Ω(L1)]/[Ω(L2)−Ω(L1)]canbealsocalculatedfromtheoutputparametersofPHOEBEsolution. In order to take into account the effect of expected correlation between the mass ratio and orbital in- clinationwecarriedoutq-searchanalysisasdescribedinKjurkchievaetal.(2016b).Forthisaimwefixed thecomponenttemperaturesandradiiaswellasthespotparametersandcalculatedthenormalizedχ2fora two-dimensionalgridalongiandq.Figure1illustratestheresultfromthisq-searchprocedureforthetarget V796Cep. Table 5 contains final values of the fitted stellar parameters and their PHOEBE uncertainties: initial epochT0; periodP;mass ratioq;inclinationi;potentialΩ; secondarytemperatureT2PH. Table6 exhibits LightcurvesolutionsoffourWUMabinaries 9 Table5 Valuesofthefittedparameters Star T0 P q i Ω T2PH V796Cep 2457321.43582(9) 0.392966 0.948(2) 70.7(1) 3.612(7) 6400(19) V797Cep 2457321.31715(74) 0.270416 0.886(2) 64.7(1) 3.525(2) 4625(42) CSSJ015341.9+381641 2457333.61496(31) 0.347518 0.892(2) 70.0(2) 3.490(1) 5607(28) NSVS3853195 2457333.59001(21) 0.292524(4) 0.899(2) 69.8(1) 3.539(3) 5592(30) Table6 Calculatedparameters Target Tm T1 T2 r1 r2 f l2/l1 V796Cep 6407 6410(19) 6403(19) 0.421(1) 0.412(1) 0.101 0.951 V797Cep 4770 4833(44) 4688(42) 0.424(1) 0.403(1) 0.075 0.771 CSSJ015341.9+381641 5715 5765(29) 5657(28) 0.434(1) 0.414(1) 0.166 0.867 NSVS3853195 5688 5733(31) 5637(30) 0.425(1) 0.406(1) 0.089 0.865 Table7 Parametersofthecoolspotsofthetargets Star β λ α k V796Cep 90(5) 35(1) 5.0(1) 0.90(1) CSSJ015341.9+381641 90(5) 90(1) 20.0(1) 0.80(1) NSVS3853195 80(5) 120(1) 25.0(2) 0.95(1) thecalculatedparameters:stellartemperaturesT1,2;stellarradiir1,2 (backvalues);filloutfactorf;ratioof relative stellar luminosities l2/l1. Their errorsare determinedfrom the uncertaintiesof outputparameters used for their calculation. Table 7 gives information for the spot parameters. The synthetic light curves correspondingtooursolutionsareshowninFig.2ascontinuouslines. The mean (g’, i’) residuals for the final fittings are: (0.005, 0.007) for V796 Cep; (0.021, 0.022) for V797Cep;(0.009,0.012)forCSSJ015341.9+381641;(0.009,0.013)forNSVS3853195.Themean(g’,i’) residualsofthestandardstars(Table3)forthefirstandsecondpairsoftargetsarecorrespondingly(0.010, 0.011)and(0.017,0.015).Hence,ourfittingsareexcellentforthethreetargetsandverygoodforthefaint star V797 Cep (Fig. 2). The small imperfectnessof our modelingmay due to inadequatetreatmentof the overcontactbinaries(Prsaetal.2016)andtolongexposures(Kipping2010). 10 Kjurkchievaetal. 0.35 0.30 0.25 0.20 f0.15 0.10 0.05 0.00 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 q Fig.4 Distributionfilloutfactor–massratioofWUMastars:redtrianglesareforshallowcontact highmassratiotargets;blackcirclesarefortargetswith decreasingperiodsfromthesampleof Yang(2013) 4 CONCLUSIONS Themainresultsfromthelightcurvesolutionsofourdataareasfollows. (1)WedeterminedtheinitialepochsT0ofthefourtargets(Table5). (2) We improved the period of NSVS 3853195 (Table 5) on the base of all photometric data: CRTS, NSVS,SWASPandIRIDA.Thepreviousperiodvaluesoftheotherthreetargetsfittedwellourdata. (3)OurobservationsrevealedthatCSSJ015404.1+382805andNSVS3853195arethesamestar(while VSXidentifiedtwostars). (4) The components of each target are almost the same in mass, temperature, radius and luminosity (Tables5-6). (5)ThestellarcomponentsofalltargetsareofGandKspectraltypesandtheyundergopartialeclipses. (6)Alltargetshaveovercontactconfigurationswithsmallfilloutfactor(Fig.3,Table6).Thismeansthat theyprobablyarenewlyformedcontactbinaries(Qianetal.2014). (7)ThreebinariesrevealedO’Connelleffectthatwasreproducedbycoolspots(Table7)ontheirprimary components.Theyareappearancesofthemagneticactivityofthesetargets. (8)Allourtargetshavemassratioq ≥0.88(Table5),i.e.theybelongtotheHsubtypeWUMasystems (withq ≥0.72).Csizmadia&Klagyivik(2004)revealedthatthedifferentsubtypesofWUMa’sarelocated intodifferentregionsonthemassratio–luminosityratiodiagram(theirfig.1)butabovethelinel2/l1 =q4.6