Lecture Notes in Applied and Computational Mechanics Volume 47 Series Editors Prof. Dr.-Ing. Friedrich Pfeiffer Prof. Dr.-Ing. Peter Wriggers Lecture Notes in Applied and Computational Mechanics Edited by F. Pfeiffer and P. Wriggers Further volumes of this series found on our homepage: springer.com Vol. 47: Studer, C. Vol. 35: Acary, V., Brogliato, B. Numerics of Unilateral Contacts and Friction Numerical Methods for Nonsmooth Dynamical Systems: 191 p. 2009 [978-3-642-01099-6] Applications in Mechanics and Electronics 545 p. 2008 [978-3-540-75391-9] Vol. 46: Ganghoffer, J.-F., Pastrone, F. (Eds.) Mechanics of Microstructured Solids Vol. 34: Flores, P.; Ambrósio, J.; Pimenta Claro, J.C.; 136 p. 2009 [978-3-642-00910-5] Lankarani Hamid M. Kinematics and Dynamics of Multibody Systems Vol. 45: Shevchuk, I.V. with Imperfect Joints: Models and Case Studies Convective Heat and Mass Transfer in Rotating Disk 186 p. 2008 [978-3-540-74359-0] Systems 300 p. 2009 [978-3-642-00717-0] Vol. 33: Niesony, A.; Macha, E. Spectral Method in Multiaxial Random Fatigue Vol. 44: Ibrahim R.A., Babitsky, V.I., Okuma, M. (Eds.) 146 p. 2007 [978-3-540-73822-0] Vibro-Impact Dynamics of Ocean Systems and Related Problems Vol. 32: Bardzokas, D.I.; Filshtinsky, M.L.; Filshtinsky, L.A. 280 p. 2009 [978-3-642-00628-9] (Eds.) Mathematical Methods in Electro-Magneto-Elasticity Vol.43: Ibrahim, R.A. 530 p. 2007 [978-3-540-71030-1] Vibro-Impact Dynamics 320 p. 2009 [978-3-642-00274-8] Vol. 31: Lehmann, L. (Ed.) Vol. 42: Hashiguchi, K. Wave Propagation in Infinite Domains Elastoplasticity Theory 186 p. 2007 [978-3-540-71108-7] 400 p. 2009 [978-3-642-00272-4] Vol. 30: Stupkiewicz, S. (Ed.) Vol. 41: Browand, F., Ross, J., McCallen, R. (Eds.) Micromechanics of Contact and Interphase Layers Aerodynamics of Heavy Vehicles II: Trucks, Buses, 206 p. 2006 [978-3-540-49716-5] and Trains 486 p. 2009 [978-3-540-85069-4] Vol. 29: Schanz, M.; Steinbach, O. (Eds.) Vol. 40: Pfeiffer, F. Boundary Element Analysis Mechanical System Dynamics 571 p. 2006 [978-3-540-47465-4] 578 p. 2008 [978-3-540-79435-6] Vol. 28: Helmig, R.; Mielke, A.; Wohlmuth, B.I. (Eds.) Vol. 39: Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N. Multifield Problems in Solid and Fluid Mechanics Masonry Constructions: Mechanical 571 p. 2006 [978-3-540-34959-4] Models and Numerical Applications 176 p. 2008 [978-3-540-79110-2 Vol. 27: Wriggers P., Nackenhorst U. (Eds.) Analysis and Simulation of Contact Problems Vol. 38: Marynowski, K. 395 p. 2006 [978-3-540-31760-9] Dynamics of the Axially Moving Orthotropic Web 140 p. 2008 [978-3-540-78988-8] Vol. 26: Nowacki, J.P. Vol. 37: Chaudhary, H.; Saha, S.K. Static and Dynamic Coupled Fields in Bodies Dynamics and Balancing of Multibody Systems with Piezoeffects or Polarization Gradient 200 p. 2008 [978-3-540-78178-3] 209 p. 2006 [978-3-540-31668-8] Vol. 36: Leine, R.I., van de Wouw, N. Vol. 25: Chen C.-N. Stability and Convergence of Mechanical Systems Discrete Element Analysis Methods with Unilateral Constraints of Generic Differential Quadratures 250 p. 2008 [978-3-540-76974-3] 282 p. 2006 [978-3-540-28947-0] Numerics of Unilateral Contacts and Friction Modeling and Numerical Time Integration in Non-Smooth Dynamics Christian Studer 123 Dr. Christian Studer IMES-Center of Mechanics, ETH Zurich, 8092 Zurich, Switzerland E-mail: [email protected] ISBN: 978-3-642-01099-6 e-ISBN: 978-3-642-01100-9 DOI 10.1007/978-3-642-01100-9 Lecture Notes in Applied and Computational Mechanics ISSN 1613-7736 e-ISSN 1860-0816 Library of Congress Control Number: Applied for © Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 0 springer.com Preface Mechanicsprovidesthelinkbetweenmathematicsandpracticalengineeringappli- cations. It is one of the oldest sciences, and many famous scientists have left and will leave their mark in this fascinating field of research.Perhapsone of the most prominentscientistsinmechanicswasSirIsaacNewton,whowithhis“lawsofmo- tion”initiatedthedescriptionofmechanicalsystemsbydifferentialequations.And still today, more than 300 years after Newton, this mathematical concept is more actualthanever. Therisingcomputerpowerandthedevelopmentofnumericalsolversfordiffer- entialequationsallowedengineersallovertheworldtopredictthebehavioroftheir physicalsystemsfastandeasyinannumericalway.Andthetrendtocomputational simulationmethodsisstillfurtherincreasing,notonlyinmechanics,butpractically inallbranchesofscience.Numericalsimulationwillprobablynotsolvetheworld’s engineeringproblems,butitwillhelpforabetterunderstandingofthemechanisms ofourmodels. Withtheriseofcomputerpower,demandsinmechanicalmodelingobtainedan additionalfocus.In“pre-computationalmechanics”scientistsaimedatshortandin- telligentformulations,forexampleordinary(linear)differentialequationsexpressed inminimalsetsofcoordinates.The“post-computationalmechanics”alsoconsiders questionslikehowtoprovidesimpleandgeneralmodelingstructureswhicharealso suitedforacomputer.Amachine,whichcanprocesslargeamountsofdata,butis limited within its intelligence,i.e. rightthe opposite of a human being. Questions arise how such different “mechanisms” like computersand human beings can in- teract and complement each other. An example of this change in demands is the conceptof differentialalgebraic equations,which are probablynot the suited tool for “hand-evaluation”but are one of the favored ways how computers can set up generalstructuresforconstrainedmechanicalproblems. The rising computer power has also brought concepts into focus, for which excellenttheoreticalframeworkexistedbutwhichhavebeenso fartoodatainten- sive for practicalevaluation.One such field of increasingresearchactivityis non- smooth mechanics,which deals with mechanicalsystems whose time evolutionis notsmoothanymore.Suchmodelingapproacheshelpforthebetterunderstanding VI Preface of systems with friction and impacts, which are omnipresentin our world, but of whichstilllittleisknownfromthemodelingandnumericaltreatmentpointofview. Perhapsthemostimportantcontributioninnon-smoothmechanicsoriginatesfrom JeanJacquesMoreauinthelate80’s.Hereplacedtheequationsofmotionandthe constraintequationsknownfromclassicalmechanicsbymeasuredifferentialequa- tionsincombinationwithinequalities.Doingso,Moreauwasablenotonlytodeal with classical smooth mechanics but also to account for non-smooth events like stick-sliptransitionsorimpacts.Inthissense,Moreaudidnotextendclassicalme- chanics to some non-smoothspecial cases but set up a complete new formulation whichincorporatesclassicalmechanics.Hisexcellenttheoreticalworkwasaccom- paniedbyanumericalintegrationscheme,whichlinksthemathematicalframework withpracticalapplications. InmyyearsasresearchassistantattheCenterofMechanicsattheETHZurichI obtainedthechancetostudythisrelativelynewfieldofmechanics.Itriedtobridge thegapbetweenhighlytheoreticalmathematicaltheoriesinnon-smoothmechanics andpracticalapplicationinsoftwarecodes,Itriedtoidentifythestructureofnon- smooth mechanics which allowed for simple and elegant implementation codes. Duringthistime,IwasaccompaniedbymanypeoplewhomI wouldliketothank for their kind support of my work, which resulted finally in this book. Especially I wantto thankmysupervisorProf.Dr.-Ing.Dr.-Ing.habil. ChristophGlockerfor guidingmyresearchandforthemanyinterestingdiscussionsaboutmechanicsand the non-smoothness of our world. Prof. Glocker managed to create a fruitful un- complicatedatmospherewhichallowedmetofollowmyownideasandtodevelop freelywithinhissupport.Hewasalsopresentindifficulttimesandencouragedme withhisenthusiasmwhenspeakingaboutmechanics.Hisbroadknowledgeinnon- smooth mechanics and his strong quest for simple, consistent and elegant math- ematical formulations have been a valuable inspiration for me. I also would like to thank Prof.Dr.habil.BernardBrogliato for reviewingmy scientific work. Prof. Brogliatoiswellknowninthenon-smoothdynamicscommunityandheadsthere- searchteamBIPOPattheINRIAinFrance.Furtherthanksgotoallmycolleagues atthecenterofmechanics,whomadetheinstituteaninteresting,pleasantandopen minded workplace. Special thanks go to Dr. ir. habil. Remco Leine who assisted mewithmuchknowledgeandwhoalsoreviewedmywork,toUeliAeberhardwho gavememathematicsupport,andtoMichaelMo¨llerwithwhomIhadmanydiscus- sionsaboutnumericsandprogramming.FinallyIwanttothankmyfamilyandmy friendsandespeciallyNadjaGerberforprovidingthemotivatingsocialbackground andmentalsupport. Zurich,2008 ChristianStuder Contents 1 Introduction.................................................. 1 1.1 AimandScope ........................................... 1 1.2 LiteratureSurvey.......................................... 4 1.2.1 ModelingofUnilateralContactsandFriction............ 4 1.2.2 TimeDiscretization ................................. 5 1.2.3 SolversforInequalityProblems ....................... 6 1.2.4 Application ........................................ 7 1.3 Outline .................................................. 7 2 MathematicalPreliminaries .................................... 9 2.1 UsedNorms.............................................. 9 2.2 Derivatives............................................... 10 2.3 ConvexAnalysis .......................................... 10 2.3.1 ConvexSets,Indicator/SupportFunctions,Normal Cones............................................. 10 2.3.2 ProximalPointandVectorDistanceFunctions........... 11 2.3.3 ProximalPointFunctionsforVariousConvexSets ....... 13 2.4 GlobalandLocalRepresentations............................ 14 2.5 DifferentialAlgebraicEquations............................. 15 3 Non-SmoothMechanics........................................ 17 3.1 EquationsofMotionintheSmoothCase ...................... 17 3.2 Non-ImpulsiveMotion ..................................... 19 3.2.1 Set-ValuedForceLaws .............................. 19 3.2.2 ExamplesofSet-ValuedForceLaws ................... 21 3.2.3 EquationsofMotionintheNon-SmoothCase ........... 24 3.3 Impacts.................................................. 26 3.4 EqualityofMeasures ...................................... 27 4 InclusionProblems............................................ 31 4.1 LinearComplementarityProblems ........................... 32 4.2 AugmentedLagrangianApproach............................ 32 VIII Contents 4.2.1 GeneralProblem.................................... 33 4.2.2 ApplicationtoNon-SmoothDynamics ................. 35 4.2.3 IterativeSolutionProcess ............................ 36 4.2.4 Choiceofr andConvergence......................... 39 i 4.2.5 UseofNon-DiagonalR’s ............................ 44 4.2.6 SuccessiveSolutionoftheSet-ValuedForceLaws ....... 48 4.2.7 Examples.......................................... 49 4.3 AlternativeApproaches .................................... 53 4.3.1 UncouplingtheSet-ValuedForceLaws................. 54 4.3.2 ExactRegularization ................................ 55 4.4 Summary ................................................ 57 5 Time-Stepping................................................ 59 5.1 DiscretizationofDifferentialAlgebraicEquations .............. 59 5.1.1 Index-1,AccelerationLevel .......................... 61 5.1.2 Index-2,VelocityLevel .............................. 62 5.1.3 Index-3,DisplacementLevel.......................... 64 5.1.4 Linearization of the Gap Function and Drift Stabilization ....................................... 68 5.1.5 Conclusions........................................ 69 5.2 TimeEvolutionofNon-smoothSystems ...................... 71 5.2.1 Event-DrivenSchemes............................... 73 5.3 Time-SteppingMethods.................................... 74 5.3.1 GeneralDiscretizationTechnique...................... 75 5.3.2 Moreau’sMidpointRule ............................. 76 5.3.3 TheModifiedΘ-Method............................. 79 5.3.4 Time-SteppingbyPaoliandSchatzman................. 80 5.3.5 Time-SteppingbyStiegelmeyr,Funk,Foerg,Pfeifferetal.. 81 5.3.6 Time-SteppingbyAnitescu,Potra,Stewart,Trinkleetal... 82 5.3.7 Time-SteppingbyGGL.............................. 88 5.3.8 Time-SteppingbyPreconditioning..................... 90 5.3.9 DiscussionandConclusions .......................... 92 6 AugmentedTime-Stepping ..................................... 99 6.1 IntegrationOrderofMoreau’sMidpointRule .................. 99 6.1.1 DefinitionoftheIntegrationOrder..................... 99 6.1.2 ExpansionoftheExactSolutionq(t)andu(t) ........... 102 6.1.3 ExpansionofMoreau’sTime-SteppingScheme.......... 105 6.1.4 LocalIntegrationOrder .............................. 107 6.1.5 GlobalIntegrationOrder ............................. 108 6.2 StepSizeAdjustmentforSwitchingPoints .................... 109 6.2.1 DeterminingtheDiscreteStateσˆ ...................... 110 6.2.2 LocalizingSwitchingPoints .......................... 112 6.3 HigherOrderIntegrationforSmoothTimeSteps ............... 114 6.3.1 Extrapolation....................................... 115 6.3.2 ExtrapolationAppliedtoMoreau’sMidpointRule........ 116 Contents IX 6.4 OverallAlgorithm......................................... 117 6.4.1 IntegrationOrder ................................... 117 6.4.2 Implementation..................................... 119 6.5 Examples ................................................ 120 6.5.1 PointMassFallingonaTable......................... 120 6.5.2 PointMassSlidingonaTable......................... 120 6.5.3 SingleDOFImpactOscillator......................... 123 6.5.4 TheWoodpeckerToy................................ 125 7 ThedynamYSoftware......................................... 129 7.1 Overview ................................................ 129 7.2 ModelingaPartialMechanicalSystem........................ 135 7.3 ModelingaNon-SmoothElement............................ 136 7.4 ModelingExternalForces .................................. 138 7.5 OneStepandSimulationObjects ............................ 139 7.6 Examples ................................................ 139 7.6.1 Bodiesin3DSpace ................................. 140 7.6.2 Non-CommonSet-ValuedLaws....................... 147 7.6.3 GranularMedia..................................... 154 7.6.4 Motorbike ......................................... 155 7.6.5 Elevator ........................................... 156 8 Summary .................................................... 161 Glossary ......................................................... 165 ProjectiontoanEllipseortoanEllipsoid ............................ 169 B.1 ProjectiontoEllipseContour................................ 169 B.2 ProjectiontoEllipsoidContour .............................. 170 References........................................................ 171 Index ............................................................ 179 Chapter 1 Introduction 1.1 Aim andScope Reality is neither smooth nor non-smooth. Models of reality are smooth or non- smoothdependingonthequestionsweask.Ifaphysicalsystemhasrapidlychang- ingphases,thenitcanbeadvantageoustomodelthesysteminanon-smoothway. Formechanicalsystemstheimpacttimesareusuallymuchsmallerthantheglobal motionwhichisofinterest.Thismotivatesthestudyofrigidmultibodydynamics. Theset-valuedforcelawswhichmodeltheconstitutivebehaviourofunilateralcon- tactsandoffrictionleadtonon-smoothmodels.Usually,thepositionsareassumed tobeabsolutelycontinuous,whilethevelocitiesareallowedtoundergojumpsand are taken to be of bounded variation. Jumps in the velocities can not be accom- plishedbyfinitebutonlybyimpulsiveforces. Apointmassfallingdowntothegroundisasimpleexampleofamechanicalsys- temwithoneunilateralcontact.Inaplanarnon-smoothmodeling,thepointmass’s twodegreesoffreedomarereducedtoonewhenthepointmasstouchestheground. If friction is considered additionally, then the degrees of freedom are reduced to zerointhecaseofsticking.Thus,therearedifferentequationsofmotioninminimal coordinates for these different configurations. In case of an impact, an additional impactlawmustbeapplied. Thisbookfocussesonnumericaltimeintegratorsforthedynamicsofnon-smooth mechanicalmodels.Suchmodelsconsistofaset ofrigidbodieswhichmayinter- actwith eachother.Similar to classical smoothmodels,the state of a non-smooth mechanical model is described by a set of (minimal or non-minimal) generalized positionsq=q(t)andgeneralizedvelocitiesu=u(t).Unlikesmoothmodels,the time evolution of these states q and u is not smooth. While the generalized po- sitions q are at least continuous, the generalized velocities u=q˙ a.e.1 may even jump at certain time instances. As a consequence, the accelerations might not be defined. Such non-smoothbehaviourresults from set-valuedforce laws which act 1The abbreviation a.e. stands for almost everywhere. It indicates that q˙ =u does not hold at singletimeinstancesatwhichimpactsoccur. C.Studer:NumericsofUnilateralContactsandFriction,LNACM47,pp.1–8. springerlink.com (cid:2)c Springer-VerlagBerlinHeidelberg2009