Table Of ContentLecture Notes in Applied
and Computational Mechanics
Volume 47
Series Editors
Prof. Dr.-Ing. Friedrich Pfeiffer
Prof. Dr.-Ing. Peter Wriggers
Lecture Notes in Applied and Computational Mechanics
Edited by F. Pfeiffer and P. Wriggers
Further volumes of this series found on our homepage: springer.com
Vol. 47: Studer, C. Vol. 35: Acary, V., Brogliato, B.
Numerics of Unilateral Contacts and Friction Numerical Methods for Nonsmooth Dynamical Systems:
191 p. 2009 [978-3-642-01099-6] Applications in Mechanics and Electronics
545 p. 2008 [978-3-540-75391-9]
Vol. 46: Ganghoffer, J.-F., Pastrone, F. (Eds.)
Mechanics of Microstructured Solids Vol. 34: Flores, P.; Ambrósio, J.; Pimenta Claro, J.C.;
136 p. 2009 [978-3-642-00910-5] Lankarani Hamid M.
Kinematics and Dynamics of Multibody Systems
Vol. 45: Shevchuk, I.V. with Imperfect Joints: Models and Case Studies
Convective Heat and Mass Transfer in Rotating Disk 186 p. 2008 [978-3-540-74359-0]
Systems
300 p. 2009 [978-3-642-00717-0] Vol. 33: Niesony, A.; Macha, E.
Spectral Method in Multiaxial Random Fatigue
Vol. 44: Ibrahim R.A., Babitsky, V.I., Okuma, M. (Eds.) 146 p. 2007 [978-3-540-73822-0]
Vibro-Impact Dynamics of Ocean Systems and Related
Problems Vol. 32: Bardzokas, D.I.; Filshtinsky, M.L.; Filshtinsky, L.A.
280 p. 2009 [978-3-642-00628-9] (Eds.)
Mathematical Methods in Electro-Magneto-Elasticity
Vol.43: Ibrahim, R.A. 530 p. 2007 [978-3-540-71030-1]
Vibro-Impact Dynamics
320 p. 2009 [978-3-642-00274-8]
Vol. 31: Lehmann, L. (Ed.)
Vol. 42: Hashiguchi, K. Wave Propagation in Infinite Domains
Elastoplasticity Theory 186 p. 2007 [978-3-540-71108-7]
400 p. 2009 [978-3-642-00272-4]
Vol. 30: Stupkiewicz, S. (Ed.)
Vol. 41: Browand, F., Ross, J., McCallen, R. (Eds.) Micromechanics of Contact and Interphase Layers
Aerodynamics of Heavy Vehicles II: Trucks, Buses, 206 p. 2006 [978-3-540-49716-5]
and Trains
486 p. 2009 [978-3-540-85069-4]
Vol. 29: Schanz, M.; Steinbach, O. (Eds.)
Vol. 40: Pfeiffer, F. Boundary Element Analysis
Mechanical System Dynamics 571 p. 2006 [978-3-540-47465-4]
578 p. 2008 [978-3-540-79435-6]
Vol. 28: Helmig, R.; Mielke, A.; Wohlmuth, B.I. (Eds.)
Vol. 39: Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N. Multifield Problems in Solid and Fluid Mechanics
Masonry Constructions: Mechanical 571 p. 2006 [978-3-540-34959-4]
Models and Numerical Applications
176 p. 2008 [978-3-540-79110-2
Vol. 27: Wriggers P., Nackenhorst U. (Eds.)
Analysis and Simulation of Contact Problems
Vol. 38: Marynowski, K.
395 p. 2006 [978-3-540-31760-9]
Dynamics of the Axially Moving Orthotropic Web
140 p. 2008 [978-3-540-78988-8]
Vol. 26: Nowacki, J.P.
Vol. 37: Chaudhary, H.; Saha, S.K. Static and Dynamic Coupled Fields in Bodies
Dynamics and Balancing of Multibody Systems with Piezoeffects or Polarization Gradient
200 p. 2008 [978-3-540-78178-3] 209 p. 2006 [978-3-540-31668-8]
Vol. 36: Leine, R.I., van de Wouw, N. Vol. 25: Chen C.-N.
Stability and Convergence of Mechanical Systems Discrete Element Analysis Methods
with Unilateral Constraints of Generic Differential Quadratures
250 p. 2008 [978-3-540-76974-3] 282 p. 2006 [978-3-540-28947-0]
Numerics of Unilateral Contacts
and Friction
Modeling and Numerical Time Integration in
Non-Smooth Dynamics
Christian Studer
123
Dr. Christian Studer
IMES-Center of Mechanics,
ETH Zurich,
8092 Zurich,
Switzerland
E-mail: christian.studer@alumni.ethz.ch
ISBN: 978-3-642-01099-6 e-ISBN: 978-3-642-01100-9
DOI 10.1007/978-3-642-01100-9
Lecture Notes in Applied and Computational Mechanics ISSN 1613-7736
e-ISSN 1860-0816
Library of Congress Control Number: Applied for
© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other ways, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always be
obtained from Springer. Violations are liable for prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Printed on acid-free paper
9 8 7 6 5 4 3 2 1 0
springer.com
Preface
Mechanicsprovidesthelinkbetweenmathematicsandpracticalengineeringappli-
cations. It is one of the oldest sciences, and many famous scientists have left and
will leave their mark in this fascinating field of research.Perhapsone of the most
prominentscientistsinmechanicswasSirIsaacNewton,whowithhis“lawsofmo-
tion”initiatedthedescriptionofmechanicalsystemsbydifferentialequations.And
still today, more than 300 years after Newton, this mathematical concept is more
actualthanever.
Therisingcomputerpowerandthedevelopmentofnumericalsolversfordiffer-
entialequationsallowedengineersallovertheworldtopredictthebehavioroftheir
physicalsystemsfastandeasyinannumericalway.Andthetrendtocomputational
simulationmethodsisstillfurtherincreasing,notonlyinmechanics,butpractically
inallbranchesofscience.Numericalsimulationwillprobablynotsolvetheworld’s
engineeringproblems,butitwillhelpforabetterunderstandingofthemechanisms
ofourmodels.
Withtheriseofcomputerpower,demandsinmechanicalmodelingobtainedan
additionalfocus.In“pre-computationalmechanics”scientistsaimedatshortandin-
telligentformulations,forexampleordinary(linear)differentialequationsexpressed
inminimalsetsofcoordinates.The“post-computationalmechanics”alsoconsiders
questionslikehowtoprovidesimpleandgeneralmodelingstructureswhicharealso
suitedforacomputer.Amachine,whichcanprocesslargeamountsofdata,butis
limited within its intelligence,i.e. rightthe opposite of a human being. Questions
arise how such different “mechanisms” like computersand human beings can in-
teract and complement each other. An example of this change in demands is the
conceptof differentialalgebraic equations,which are probablynot the suited tool
for “hand-evaluation”but are one of the favored ways how computers can set up
generalstructuresforconstrainedmechanicalproblems.
The rising computer power has also brought concepts into focus, for which
excellenttheoreticalframeworkexistedbutwhichhavebeenso fartoodatainten-
sive for practicalevaluation.One such field of increasingresearchactivityis non-
smooth mechanics,which deals with mechanicalsystems whose time evolutionis
notsmoothanymore.Suchmodelingapproacheshelpforthebetterunderstanding
VI Preface
of systems with friction and impacts, which are omnipresentin our world, but of
whichstilllittleisknownfromthemodelingandnumericaltreatmentpointofview.
Perhapsthemostimportantcontributioninnon-smoothmechanicsoriginatesfrom
JeanJacquesMoreauinthelate80’s.Hereplacedtheequationsofmotionandthe
constraintequationsknownfromclassicalmechanicsbymeasuredifferentialequa-
tionsincombinationwithinequalities.Doingso,Moreauwasablenotonlytodeal
with classical smooth mechanics but also to account for non-smooth events like
stick-sliptransitionsorimpacts.Inthissense,Moreaudidnotextendclassicalme-
chanics to some non-smoothspecial cases but set up a complete new formulation
whichincorporatesclassicalmechanics.Hisexcellenttheoreticalworkwasaccom-
paniedbyanumericalintegrationscheme,whichlinksthemathematicalframework
withpracticalapplications.
InmyyearsasresearchassistantattheCenterofMechanicsattheETHZurichI
obtainedthechancetostudythisrelativelynewfieldofmechanics.Itriedtobridge
thegapbetweenhighlytheoreticalmathematicaltheoriesinnon-smoothmechanics
andpracticalapplicationinsoftwarecodes,Itriedtoidentifythestructureofnon-
smooth mechanics which allowed for simple and elegant implementation codes.
Duringthistime,IwasaccompaniedbymanypeoplewhomI wouldliketothank
for their kind support of my work, which resulted finally in this book. Especially
I wantto thankmysupervisorProf.Dr.-Ing.Dr.-Ing.habil. ChristophGlockerfor
guidingmyresearchandforthemanyinterestingdiscussionsaboutmechanicsand
the non-smoothness of our world. Prof. Glocker managed to create a fruitful un-
complicatedatmospherewhichallowedmetofollowmyownideasandtodevelop
freelywithinhissupport.Hewasalsopresentindifficulttimesandencouragedme
withhisenthusiasmwhenspeakingaboutmechanics.Hisbroadknowledgeinnon-
smooth mechanics and his strong quest for simple, consistent and elegant math-
ematical formulations have been a valuable inspiration for me. I also would like
to thank Prof.Dr.habil.BernardBrogliato for reviewingmy scientific work. Prof.
Brogliatoiswellknowninthenon-smoothdynamicscommunityandheadsthere-
searchteamBIPOPattheINRIAinFrance.Furtherthanksgotoallmycolleagues
atthecenterofmechanics,whomadetheinstituteaninteresting,pleasantandopen
minded workplace. Special thanks go to Dr. ir. habil. Remco Leine who assisted
mewithmuchknowledgeandwhoalsoreviewedmywork,toUeliAeberhardwho
gavememathematicsupport,andtoMichaelMo¨llerwithwhomIhadmanydiscus-
sionsaboutnumericsandprogramming.FinallyIwanttothankmyfamilyandmy
friendsandespeciallyNadjaGerberforprovidingthemotivatingsocialbackground
andmentalsupport.
Zurich,2008 ChristianStuder
Contents
1 Introduction.................................................. 1
1.1 AimandScope ........................................... 1
1.2 LiteratureSurvey.......................................... 4
1.2.1 ModelingofUnilateralContactsandFriction............ 4
1.2.2 TimeDiscretization ................................. 5
1.2.3 SolversforInequalityProblems ....................... 6
1.2.4 Application ........................................ 7
1.3 Outline .................................................. 7
2 MathematicalPreliminaries .................................... 9
2.1 UsedNorms.............................................. 9
2.2 Derivatives............................................... 10
2.3 ConvexAnalysis .......................................... 10
2.3.1 ConvexSets,Indicator/SupportFunctions,Normal
Cones............................................. 10
2.3.2 ProximalPointandVectorDistanceFunctions........... 11
2.3.3 ProximalPointFunctionsforVariousConvexSets ....... 13
2.4 GlobalandLocalRepresentations............................ 14
2.5 DifferentialAlgebraicEquations............................. 15
3 Non-SmoothMechanics........................................ 17
3.1 EquationsofMotionintheSmoothCase ...................... 17
3.2 Non-ImpulsiveMotion ..................................... 19
3.2.1 Set-ValuedForceLaws .............................. 19
3.2.2 ExamplesofSet-ValuedForceLaws ................... 21
3.2.3 EquationsofMotionintheNon-SmoothCase ........... 24
3.3 Impacts.................................................. 26
3.4 EqualityofMeasures ...................................... 27
4 InclusionProblems............................................ 31
4.1 LinearComplementarityProblems ........................... 32
4.2 AugmentedLagrangianApproach............................ 32
VIII Contents
4.2.1 GeneralProblem.................................... 33
4.2.2 ApplicationtoNon-SmoothDynamics ................. 35
4.2.3 IterativeSolutionProcess ............................ 36
4.2.4 Choiceofr andConvergence......................... 39
i
4.2.5 UseofNon-DiagonalR’s ............................ 44
4.2.6 SuccessiveSolutionoftheSet-ValuedForceLaws ....... 48
4.2.7 Examples.......................................... 49
4.3 AlternativeApproaches .................................... 53
4.3.1 UncouplingtheSet-ValuedForceLaws................. 54
4.3.2 ExactRegularization ................................ 55
4.4 Summary ................................................ 57
5 Time-Stepping................................................ 59
5.1 DiscretizationofDifferentialAlgebraicEquations .............. 59
5.1.1 Index-1,AccelerationLevel .......................... 61
5.1.2 Index-2,VelocityLevel .............................. 62
5.1.3 Index-3,DisplacementLevel.......................... 64
5.1.4 Linearization of the Gap Function and Drift
Stabilization ....................................... 68
5.1.5 Conclusions........................................ 69
5.2 TimeEvolutionofNon-smoothSystems ...................... 71
5.2.1 Event-DrivenSchemes............................... 73
5.3 Time-SteppingMethods.................................... 74
5.3.1 GeneralDiscretizationTechnique...................... 75
5.3.2 Moreau’sMidpointRule ............................. 76
5.3.3 TheModifiedΘ-Method............................. 79
5.3.4 Time-SteppingbyPaoliandSchatzman................. 80
5.3.5 Time-SteppingbyStiegelmeyr,Funk,Foerg,Pfeifferetal.. 81
5.3.6 Time-SteppingbyAnitescu,Potra,Stewart,Trinkleetal... 82
5.3.7 Time-SteppingbyGGL.............................. 88
5.3.8 Time-SteppingbyPreconditioning..................... 90
5.3.9 DiscussionandConclusions .......................... 92
6 AugmentedTime-Stepping ..................................... 99
6.1 IntegrationOrderofMoreau’sMidpointRule .................. 99
6.1.1 DefinitionoftheIntegrationOrder..................... 99
6.1.2 ExpansionoftheExactSolutionq(t)andu(t) ........... 102
6.1.3 ExpansionofMoreau’sTime-SteppingScheme.......... 105
6.1.4 LocalIntegrationOrder .............................. 107
6.1.5 GlobalIntegrationOrder ............................. 108
6.2 StepSizeAdjustmentforSwitchingPoints .................... 109
6.2.1 DeterminingtheDiscreteStateσˆ ...................... 110
6.2.2 LocalizingSwitchingPoints .......................... 112
6.3 HigherOrderIntegrationforSmoothTimeSteps ............... 114
6.3.1 Extrapolation....................................... 115
6.3.2 ExtrapolationAppliedtoMoreau’sMidpointRule........ 116
Contents IX
6.4 OverallAlgorithm......................................... 117
6.4.1 IntegrationOrder ................................... 117
6.4.2 Implementation..................................... 119
6.5 Examples ................................................ 120
6.5.1 PointMassFallingonaTable......................... 120
6.5.2 PointMassSlidingonaTable......................... 120
6.5.3 SingleDOFImpactOscillator......................... 123
6.5.4 TheWoodpeckerToy................................ 125
7 ThedynamYSoftware......................................... 129
7.1 Overview ................................................ 129
7.2 ModelingaPartialMechanicalSystem........................ 135
7.3 ModelingaNon-SmoothElement............................ 136
7.4 ModelingExternalForces .................................. 138
7.5 OneStepandSimulationObjects ............................ 139
7.6 Examples ................................................ 139
7.6.1 Bodiesin3DSpace ................................. 140
7.6.2 Non-CommonSet-ValuedLaws....................... 147
7.6.3 GranularMedia..................................... 154
7.6.4 Motorbike ......................................... 155
7.6.5 Elevator ........................................... 156
8 Summary .................................................... 161
Glossary ......................................................... 165
ProjectiontoanEllipseortoanEllipsoid ............................ 169
B.1 ProjectiontoEllipseContour................................ 169
B.2 ProjectiontoEllipsoidContour .............................. 170
References........................................................ 171
Index ............................................................ 179
Chapter 1
Introduction
1.1 Aim andScope
Reality is neither smooth nor non-smooth. Models of reality are smooth or non-
smoothdependingonthequestionsweask.Ifaphysicalsystemhasrapidlychang-
ingphases,thenitcanbeadvantageoustomodelthesysteminanon-smoothway.
Formechanicalsystemstheimpacttimesareusuallymuchsmallerthantheglobal
motionwhichisofinterest.Thismotivatesthestudyofrigidmultibodydynamics.
Theset-valuedforcelawswhichmodeltheconstitutivebehaviourofunilateralcon-
tactsandoffrictionleadtonon-smoothmodels.Usually,thepositionsareassumed
tobeabsolutelycontinuous,whilethevelocitiesareallowedtoundergojumpsand
are taken to be of bounded variation. Jumps in the velocities can not be accom-
plishedbyfinitebutonlybyimpulsiveforces.
Apointmassfallingdowntothegroundisasimpleexampleofamechanicalsys-
temwithoneunilateralcontact.Inaplanarnon-smoothmodeling,thepointmass’s
twodegreesoffreedomarereducedtoonewhenthepointmasstouchestheground.
If friction is considered additionally, then the degrees of freedom are reduced to
zerointhecaseofsticking.Thus,therearedifferentequationsofmotioninminimal
coordinates for these different configurations. In case of an impact, an additional
impactlawmustbeapplied.
Thisbookfocussesonnumericaltimeintegratorsforthedynamicsofnon-smooth
mechanicalmodels.Suchmodelsconsistofaset ofrigidbodieswhichmayinter-
actwith eachother.Similar to classical smoothmodels,the state of a non-smooth
mechanical model is described by a set of (minimal or non-minimal) generalized
positionsq=q(t)andgeneralizedvelocitiesu=u(t).Unlikesmoothmodels,the
time evolution of these states q and u is not smooth. While the generalized po-
sitions q are at least continuous, the generalized velocities u=q˙ a.e.1 may even
jump at certain time instances. As a consequence, the accelerations might not be
defined. Such non-smoothbehaviourresults from set-valuedforce laws which act
1The abbreviation a.e. stands for almost everywhere. It indicates that q˙ =u does not hold at
singletimeinstancesatwhichimpactsoccur.
C.Studer:NumericsofUnilateralContactsandFriction,LNACM47,pp.1–8.
springerlink.com (cid:2)c Springer-VerlagBerlinHeidelberg2009