Table Of ContentC. Clauser (Ed.)
Numerical Simulation of Reactive Flow in Hot Aquifers
Springer-Verlag Berlin Hedelberg GmbH
Christoph Clauser (Ed.)
Numerical Simulation
of Reactive Flow
in Hot Aquifers
SHEMAT and Processing SHEMAT
With Contributions by
Jorn Bartels, Li Zhen Cheng, Wen-Hsing Chiang,
Christoph Clauser, Suzanne J. Hurter, Michael Kiihn,
Volker Meyn, Hansgeorg Pape, Daniel Ee. Pribnow,
Giorgio Ranalli, Wilfried Schneider, Heinke Stofen
rn::n!l1
With _ , 202 Figures, 139 in Colour, and 83 Tables
i
Springer
EDITOR
Professor Dr. Christoph Clauser
Aachen University (RWTH)
Applied Geophysics
LochnerstraBe 4-20
52056 Aachen
Germany
email: c.clauser@geophysik.rtwh-aachen.de
Internet: http://www.geophysik.rwth-aachen.de
With the purchase of this product the customer has legal access to
updated versions of the software. For details, please consult
http://link.springer.de/software/shemat/reg..Jorm.htm
Additional material to this book can be downloaded from http://extras.springer.com.
ISBN 978-3-642-62866-5 ISBN 978-3-642-55684-5 (eBook)
DOI 10.1007/978-3-642-55684-5
Library of Congress Cataloging-in-Publication Data Applied For
Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet liber <http://dnb.ddb.de> abrufbar.
This wark is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations,
broadcasting, reproduction on microfilm ar in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permis sion for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.
http://www.springer.de
© Springer-Verlag Berlin Heidelberg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
Softcover reprint of the hardcover lst edition 2003
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
Cover Design: design & production, Heidelberg
Typesetting: Camera-ready by the editor
SPIN: 10863264 32/3140 - 5 43 2 1 o - Printed on acid free paper
Contents
Contents ................................................................................................................. V
Contributing Authors ......................................................................................... IX
1 Introduction ........................................................................................................ 1
Christoph Clauser and Jorn Bartels
2 Numerical Simulation of Reactive Flow using SHE MAT ............................... 5
Jorn Bartels, Michael Kuhn, and Christoph Clauser
2.1 General .................................................................................................... 5
2.2 Governing Equations ............................................................................... 6
2.2.1 General ............................................................................................. 6
2.2.1 Ground Water Flow ......................................................................... 8
2.2.2 Heat Transport ................................................................................. 9
2.2.3 Species Transport ........................................................................... 11
2.2.4 Physical Properties ......................................................................... 12
2.2.5 Chemical Reactions ....................................................................... 16
2.3 Numerical Techniques ........................................................................... 18
2.3.1 Finite Difference Method ............................................................... 18
2.3.2 Flow Discretization ........................................................................ 19
2.3.3 Discretization Schemes for Transport of Heat and Dissolved
Species .................................................................................................... 21
2.3.4 Equation Solver. ............................................................................. 25
2.3.5 Time Step Control .......................................................................... 26
2.3.6 Process Coupling ........................................................................... 28
2.4 Input / Output ........................................................................................ 32
2.4.1 General Overview .......................................................................... 32
2.4.2 Control File .................................................................................... 32
2.4.3 Input File ........................................................................................ 33
2.4.4 Output File ..................................................................................... 48
2.4.5 Plot Files ........................................................................................ 48
2.4.6 Output Grid .................................................................................... 50
2.4.7 Monitoring Files ............................................................................ 50
2.4.8 Run-time Information .................................................................... 51
2.5 Practical Modeling: Remarks, Explanations and Instructions ............... 52
2.5.1 Problem Size .................................................................................. 53
2.5.2 Remarks on Flow Input Parameters ............................................... 53
2.5.3 Boundary Conditions and Wells .................................................... 53
2.5.4 Time ............................................................................................... 54
2.5.5 Convergence .................................................................................. 55
2.6 Code Verification .................................................................................. 56
VI
2.6.1 Theis Problem ................................................................................ 56
2.6.2 Rotating Cone Test ........................................................................ 60
2.6.3 Henry's Problem ............................................................................ 64
2.6.4 Elder's problem .............................................................................. 68
3 Pre-and Post-Processing with "Processing SHEMAT" ................................ 75
Michael Kuhn and Wen-Hsing Chiang
3.1 What is Processing SHEMAT? ............................................................. 75
3.1.1 Professional Graphical Data Input Features ................................... 75
3.1.2 Sophisticated Modeling Tools ....................................................... 75
3.2 Modeling Environment ......................................................................... 76
3.2.1 Units .............................................................................................. 76
3.2.2 Toolbar. .......................................................................................... 77
3.2.3 Grid Editor ..................................................................................... 78
3.2.4 Data Editor ..................................................................................... 82
3.2.5 Value .............................................................................................. 87
3.2.6 Options ........................................................................................... 91
3.3 Menu System ......................................................................................... 99
3.3.1 File ................................................................................................. 99
3.3.2 Grid .............................................................................................. 101
3.3.3 Type ............................................................................................. 103
3.3.4 Time ............................................................................................. 107
3.3.5 Flow ............................................................................................. 110
3.3.6 Heat. ............................................................................................. 115
3.3.7 Transport ...................................................................................... 118
3.3.8 Reaction ....................................................................................... 121
3.3.9 Models ......................................................................................... 128
3.3.10 Tools .......................................................................................... 131
3.3.11 Help ........................................................................................... 153
4 Advanced Features ......................................................................................... 153
Michael Kuhn and Hansgeorg Pape
4.1 Chemical Equilibrium Speciation for Brines at High Temperatures and
Ionic Strength ............................................................................................ 153
4.1.1 Activity calculations .................................................................... 154
4.1.2 Comparison ofthe Pitzer and Debye-Huckel Models .................. 157
4.1.3 Chemical Module based on Pitzer's Equations ............................ 158
4.1.4 Specification of the Chemical Module ........................................ 163
4.2 Fractal Relation Between Porosity and Permeability: Theory and
Verification ............................................................................................... 171
4.2.1 Introduction ................................................................................. 171
4.2.2 Permeability Derived from Pore Space Models ........................... 172
4.2.3 Exponents in the Relationship between Porosity and Permeability
Implemented in SHEMAT .................................................................... 187
Contents VII
5 Tutorial for "Processing SHEMAT" ............................................................ 189
Heinke StOfen and Michael KUhn
5.1 Introduction ......................................................................................... 189
5.1.1 General Information ..................................................................... 189
5.1.2 How to use this Tutorial... ............................................................ 189
5.1.3 Description of the Example Problem ........................................... 190
5.2 Creating a Fluid Flow, Heat Transfer, and Solute Transport Model ... 191
5.2.1 Generating a New Model ............................................................. 191
5.2.2 Defining the Flow Parameters ...................................................... 202
5.2.3 Defining the Heat Parameters ...................................................... 204
5.2.4 Defining the Transport Parameters .............................................. 205
5.2.5 Running Models and Visualizing Results .................................... 207
5 .3 Using the Geochemical Reaction Module ........................................... 210
5.3.1 General Information ..................................................................... 210
5.3.2 Refining the Model Grid .............................................................. 210
5.3.3 Defming the Reaction Parameters ................................................ 213
5.3.4 Running Geochemical Reaction Models and Visualizing Results216
5.4 Expanding the Model to Three Dimensions ........................................ 217
5.4.2 Defining the additional Model Parameters .................................. 218
5.4.3 Running 3-D Models and Visualizing Results ............................. 223
6 Applications .................................................................................................... 229
Jom Bartels, Li Zhen Cheng, Christoph Clauser, Suzanne Hurter, Michael
Kuhn, Volker Meyn, Daniel Pribnow, Giorgio Ranalli, Wilfried Schneider,
Heinke StOfen
6.1 Development of a Preferential Flow Path in an Anhydrite Cemented
Sandstone: Numerical Simulation of a Core Flooding Experiment .......... 231
Michael Kuhn
6.1.1 Problem description ..................................................................... 231
6.1.2 Laboratory core flooding experiment .......................................... 232
6.1.3 Concept and conditions for preferential flow path development. 233
6.1.4 Model description and assumptions ............................................. 233
6.1.5 Results and Discussion ................................................................ 239
6.7.6 Conclusion ................................................................................... 240
6.2 Modeling Flooding of a Sandstone Core with Reactive Transport and
Subsequent Changes in Porosity and Permeability ................................... 243
Jom Bartels, Michael Kuhn, Christoph Clauser and Volker Meyn
6.2.1 Problem description and experimental data ................................. 243
6.2.2 Model Description and Assumptions ........................................... 247
6.2.4 Results and Discussion ................................................................ 250
6.3 Injection Well with Reaction Kinetics ................................................. 253
Michael Kuhn and Wilfried Schneider
6.3.1 Problem description ..................................................................... 253
6.3.2 Model description and assumptions ............................................. 254
6.3.3 Results and Discussion ................................................................ 258
VIII
6.3.4 Conclusion ................................................................................... 262
6.4 Magmatic Intrusions in Long Valley Caldera ..................................... 263
Suzanne Hurter
6.4.1 Long Valley Caldera: introduction and regional setting .............. 263
6.4.2 Model description and assumptions ............................................. 264
6.4.3 Steady-state Conductive Models .................................................. 269
6.4.4 Transient Models of Heating and Cooling ................................... 273
6.4.5 Discussion .................................................................................... 274
6.5 Rhine Graben Cross Section ............................................................... 277
Daniel Pribnow
6.5.1 Rhine Graben: Introduction and regional setting ......................... 277
6.5.2 Temperature Data Across the Upper Rhine Graben .................... 278
6.5.3 Model description and assumptions ............................................. 279
6.5.4 Results and Discussion ................................................................ 280
6.5.5 Discussion .................................................................................... 283
6.6 Thermal Transect of Continental Lithosphere in Canada .................... 287
Li Zhen Cheng and Giorgio Ranalli
6.6.1 Problem description ..................................................................... 287
6.6.2 Temperature in the lithosphere: a matter of uncertainty .............. 288
6.6.3 Model description ........................................................................ 290
6.6.4 Results and discussion ................................................................. 293
6.7 Waiwera Coastal Geothermal System ................................................. 297
Heinke SWfen and Michael Kuhn
6.7.1 Problem description ..................................................................... 297
6.7.2 Observations ................................................................................ 299
6.7.3 Model description and assumptions ............................................. 302
6.1.4 Results and Discussion ................................................................ 311
6.7.5 Conclusions ................................................................................. 316
References .......................................................................................................... 317
Index ................................................................................................................... 331
Contributing Authors IX
Contributing Authors
Jorn Bartels*
Geothermie Neubrandenburg Ltd., PO Box 110120,
D-17041 Neubrandenburg, Germany; bartels.gtn@gtn-online.de
Li Zhen Cheng§ and Giorgio Ranalli
Ottawa-Carleton Geoscience Centre, Carlton University, Ottawa Ontario
K1 S 5B6, Canada; li@olympus.geotop.uquam.ca: granalli@ccs.carleton.ca
Wen-Hsing Chiang
Excel Info Tech, Inc., 20 Fairbanks, Suite 187, Irvine, CA 92618, USA;
wchiang@neteit.com
Christoph Clauser and Hansgeorg Pape
Applied Geophysics, Aachen University (RWTH),
Lochnerstr. 4-20, D-52056 Aachen, Germany;
c. clauser@geophysik.rwth-aachen.de; h.pape@geophysik.rwth-aachen.de
Suzanne J. Hurter
Geoforschungszentrum Potsdam, Telegrafenberg, D-14473 Potsdam,
Germany; hurter@gfZ-potsdam.de
Michael Kuhn, Wilfried Schneider, and Heinke Stofen
Dept. of Water Management and Water Supply, Technical University
Hamburg-Harburg, Schwarzenbergstr. 95, D-21073 Hamburg, Germany;
m.kuehn@tu-harburg.de: w.schneider@tu-harburg.de: sto&n@tu-harburg.de
Volker Meyn
German Petroleum Institute (IfE), Walter-Nernst-Str. 7, D-38678 Claus thal
Zellerfeld, Germany; volker.meyn@tu-clausthal.de
Daniel F. C. Pribnow
Shell International Exploration and Production B. V, Volmerlaan 8, Postbus
60, NL-2280 AB Rijswijk, The Netherlands; d.pribnow@siep.shell.com
*
presiously at Aachen University (RTWH)
§ now at : GEOTOP, Universite de Montreal, Pavillon President Kennedy,
Montreal, Quebec H2X 3 Y7, Montreal, Canada
1 Introduction
Christoph Clauser and Jom Bartels
SHE MAT (Simulator for HEat and MAss Transport) is an easy-to-use, general
purpose reactive transport simulation code for a wide variety of thermal and hy
drogeological problems in two and three dimensions. Specifically, SHEMAT
solves coupled problems involving fluid flow, heat transfer, species transport, and
chemical water-rock interaction in fluid-saturated porous media. It can handle a
wide range of time scales. Therefore, it is useful to address both technical and geo
logical processes. In particular, it offers special and attractive features for model
ing steady-state and transient processes in hydro-geothermal reservoirs. This
makes it well suited to predict the long-term behavior of heat mining installations
in hot aquifers with highly saline brines. SHEMA T in its present form evolved
from a fully coupled flow and heat transport model (Clauser 1988) which had
been developed from the isothermal USGS 3-D groundwater model of Trescott
and Larson (Trescott 1975; Trescott and Larson 1977). Transport of dissolved
species, geochemical reactions between the solid and fluid phases, extended cou
pling between the individual processes (most notably between porosity and per
meability), and a convenient user interface (developed from Processing Modflow
(Chiang and Kinzelbach 2001)) were added during several research projects
funded by the German Science Foundation (DFG) under grant CL 12117 and the
German Federal Ministries for Education, Science, Research, and Technology
(BMBF) under grant 032 69 95A-D and for Economics and Technology (BMWi)
under grant 0327095 (Bartels et al. 2002, Kuhn et al. 2002a).
A number of reactive transport codes are available for isothermal problems fo
cusing on, but not restricted to, groundwater remediation in shallow reservoirs,
such as MOCDENSE (Sanford and Konikow 1989) coupled with PHREEQE
(Parkhurst et al. 1980), CHEMFRONTS (Baverman et al. 1999), MIN3P (Mayer
1999), PHT3D (Pommer et al. 2001). Reactive transport codes addressing also
heat transport are 3DHYDROGEOCHEM (Cheng and Yeh 1998),
TOUGH2IEWASG (Battistelli et al. 1997), CHEM-TOUGH2 (White 1995; White
and Mroczek 1998), and TOUGHREACT (Xu and Pruess 2001a,b; Xu et al.
2001). SHEMAT's advantage in respect to these codes, however, lies mainly in
(l) the extended availability of coupling relations between reaction, flow, and
transport via a novel and calibrated fractal relationship between porosity and per
meability and a number of relations previously derived in literature for special re
actions or rock types, and (2) the extended validity of the chemical reactions im
plemented in SHEMA T for elevated temperature and high ionic strength of the
solution (compared to TOUGH REACT, and CHEM-TOUGH2):
3DHYDROGEOCHEM does not couple permeability to changes in porosity
due to chemical reactions at all, while TOUGHREACT, TOUGH2/EW ASG and
CHEM-TOUGH2 use empirical approaches or relations derived from simplified
pore space geometries valid for a very restricted type of reactions only (Weir and
C. Clauser (ed.), Numerical Simulation of Reactive Flow in Hot Aquifers
© Springer-Verlag Berlin Heidelberg 2003