ebook img

Numerical Simulation of Reactive Flow in Hot Aquifers: SHEMAT and Processing SHEMAT PDF

338 Pages·2003·18.046 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Simulation of Reactive Flow in Hot Aquifers: SHEMAT and Processing SHEMAT

C. Clauser (Ed.) Numerical Simulation of Reactive Flow in Hot Aquifers Springer-Verlag Berlin Hedelberg GmbH Christoph Clauser (Ed.) Numerical Simulation of Reactive Flow in Hot Aquifers SHEMAT and Processing SHEMAT With Contributions by Jorn Bartels, Li Zhen Cheng, Wen-Hsing Chiang, Christoph Clauser, Suzanne J. Hurter, Michael Kiihn, Volker Meyn, Hansgeorg Pape, Daniel Ee. Pribnow, Giorgio Ranalli, Wilfried Schneider, Heinke Stofen rn::n!l1 With _ , 202 Figures, 139 in Colour, and 83 Tables i Springer EDITOR Professor Dr. Christoph Clauser Aachen University (RWTH) Applied Geophysics LochnerstraBe 4-20 52056 Aachen Germany email: [email protected] Internet: http://www.geophysik.rwth-aachen.de With the purchase of this product the customer has legal access to updated versions of the software. For details, please consult http://link.springer.de/software/shemat/reg..Jorm.htm Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-3-642-62866-5 ISBN 978-3-642-55684-5 (eBook) DOI 10.1007/978-3-642-55684-5 Library of Congress Cataloging-in-Publication Data Applied For Bibliographische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet liber <http://dnb.ddb.de> abrufbar. This wark is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm ar in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permis sion for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. http://www.springer.de © Springer-Verlag Berlin Heidelberg 2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003 Softcover reprint of the hardcover lst edition 2003 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover Design: design & production, Heidelberg Typesetting: Camera-ready by the editor SPIN: 10863264 32/3140 - 5 43 2 1 o - Printed on acid free paper Contents Contents ................................................................................................................. V Contributing Authors ......................................................................................... IX 1 Introduction ........................................................................................................ 1 Christoph Clauser and Jorn Bartels 2 Numerical Simulation of Reactive Flow using SHE MAT ............................... 5 Jorn Bartels, Michael Kuhn, and Christoph Clauser 2.1 General .................................................................................................... 5 2.2 Governing Equations ............................................................................... 6 2.2.1 General ............................................................................................. 6 2.2.1 Ground Water Flow ......................................................................... 8 2.2.2 Heat Transport ................................................................................. 9 2.2.3 Species Transport ........................................................................... 11 2.2.4 Physical Properties ......................................................................... 12 2.2.5 Chemical Reactions ....................................................................... 16 2.3 Numerical Techniques ........................................................................... 18 2.3.1 Finite Difference Method ............................................................... 18 2.3.2 Flow Discretization ........................................................................ 19 2.3.3 Discretization Schemes for Transport of Heat and Dissolved Species .................................................................................................... 21 2.3.4 Equation Solver. ............................................................................. 25 2.3.5 Time Step Control .......................................................................... 26 2.3.6 Process Coupling ........................................................................... 28 2.4 Input / Output ........................................................................................ 32 2.4.1 General Overview .......................................................................... 32 2.4.2 Control File .................................................................................... 32 2.4.3 Input File ........................................................................................ 33 2.4.4 Output File ..................................................................................... 48 2.4.5 Plot Files ........................................................................................ 48 2.4.6 Output Grid .................................................................................... 50 2.4.7 Monitoring Files ............................................................................ 50 2.4.8 Run-time Information .................................................................... 51 2.5 Practical Modeling: Remarks, Explanations and Instructions ............... 52 2.5.1 Problem Size .................................................................................. 53 2.5.2 Remarks on Flow Input Parameters ............................................... 53 2.5.3 Boundary Conditions and Wells .................................................... 53 2.5.4 Time ............................................................................................... 54 2.5.5 Convergence .................................................................................. 55 2.6 Code Verification .................................................................................. 56 VI 2.6.1 Theis Problem ................................................................................ 56 2.6.2 Rotating Cone Test ........................................................................ 60 2.6.3 Henry's Problem ............................................................................ 64 2.6.4 Elder's problem .............................................................................. 68 3 Pre-and Post-Processing with "Processing SHEMAT" ................................ 75 Michael Kuhn and Wen-Hsing Chiang 3.1 What is Processing SHEMAT? ............................................................. 75 3.1.1 Professional Graphical Data Input Features ................................... 75 3.1.2 Sophisticated Modeling Tools ....................................................... 75 3.2 Modeling Environment ......................................................................... 76 3.2.1 Units .............................................................................................. 76 3.2.2 Toolbar. .......................................................................................... 77 3.2.3 Grid Editor ..................................................................................... 78 3.2.4 Data Editor ..................................................................................... 82 3.2.5 Value .............................................................................................. 87 3.2.6 Options ........................................................................................... 91 3.3 Menu System ......................................................................................... 99 3.3.1 File ................................................................................................. 99 3.3.2 Grid .............................................................................................. 101 3.3.3 Type ............................................................................................. 103 3.3.4 Time ............................................................................................. 107 3.3.5 Flow ............................................................................................. 110 3.3.6 Heat. ............................................................................................. 115 3.3.7 Transport ...................................................................................... 118 3.3.8 Reaction ....................................................................................... 121 3.3.9 Models ......................................................................................... 128 3.3.10 Tools .......................................................................................... 131 3.3.11 Help ........................................................................................... 153 4 Advanced Features ......................................................................................... 153 Michael Kuhn and Hansgeorg Pape 4.1 Chemical Equilibrium Speciation for Brines at High Temperatures and Ionic Strength ............................................................................................ 153 4.1.1 Activity calculations .................................................................... 154 4.1.2 Comparison ofthe Pitzer and Debye-Huckel Models .................. 157 4.1.3 Chemical Module based on Pitzer's Equations ............................ 158 4.1.4 Specification of the Chemical Module ........................................ 163 4.2 Fractal Relation Between Porosity and Permeability: Theory and Verification ............................................................................................... 171 4.2.1 Introduction ................................................................................. 171 4.2.2 Permeability Derived from Pore Space Models ........................... 172 4.2.3 Exponents in the Relationship between Porosity and Permeability Implemented in SHEMAT .................................................................... 187 Contents VII 5 Tutorial for "Processing SHEMAT" ............................................................ 189 Heinke StOfen and Michael KUhn 5.1 Introduction ......................................................................................... 189 5.1.1 General Information ..................................................................... 189 5.1.2 How to use this Tutorial... ............................................................ 189 5.1.3 Description of the Example Problem ........................................... 190 5.2 Creating a Fluid Flow, Heat Transfer, and Solute Transport Model ... 191 5.2.1 Generating a New Model ............................................................. 191 5.2.2 Defining the Flow Parameters ...................................................... 202 5.2.3 Defining the Heat Parameters ...................................................... 204 5.2.4 Defining the Transport Parameters .............................................. 205 5.2.5 Running Models and Visualizing Results .................................... 207 5 .3 Using the Geochemical Reaction Module ........................................... 210 5.3.1 General Information ..................................................................... 210 5.3.2 Refining the Model Grid .............................................................. 210 5.3.3 Defming the Reaction Parameters ................................................ 213 5.3.4 Running Geochemical Reaction Models and Visualizing Results216 5.4 Expanding the Model to Three Dimensions ........................................ 217 5.4.2 Defining the additional Model Parameters .................................. 218 5.4.3 Running 3-D Models and Visualizing Results ............................. 223 6 Applications .................................................................................................... 229 Jom Bartels, Li Zhen Cheng, Christoph Clauser, Suzanne Hurter, Michael Kuhn, Volker Meyn, Daniel Pribnow, Giorgio Ranalli, Wilfried Schneider, Heinke StOfen 6.1 Development of a Preferential Flow Path in an Anhydrite Cemented Sandstone: Numerical Simulation of a Core Flooding Experiment .......... 231 Michael Kuhn 6.1.1 Problem description ..................................................................... 231 6.1.2 Laboratory core flooding experiment .......................................... 232 6.1.3 Concept and conditions for preferential flow path development. 233 6.1.4 Model description and assumptions ............................................. 233 6.1.5 Results and Discussion ................................................................ 239 6.7.6 Conclusion ................................................................................... 240 6.2 Modeling Flooding of a Sandstone Core with Reactive Transport and Subsequent Changes in Porosity and Permeability ................................... 243 Jom Bartels, Michael Kuhn, Christoph Clauser and Volker Meyn 6.2.1 Problem description and experimental data ................................. 243 6.2.2 Model Description and Assumptions ........................................... 247 6.2.4 Results and Discussion ................................................................ 250 6.3 Injection Well with Reaction Kinetics ................................................. 253 Michael Kuhn and Wilfried Schneider 6.3.1 Problem description ..................................................................... 253 6.3.2 Model description and assumptions ............................................. 254 6.3.3 Results and Discussion ................................................................ 258 VIII 6.3.4 Conclusion ................................................................................... 262 6.4 Magmatic Intrusions in Long Valley Caldera ..................................... 263 Suzanne Hurter 6.4.1 Long Valley Caldera: introduction and regional setting .............. 263 6.4.2 Model description and assumptions ............................................. 264 6.4.3 Steady-state Conductive Models .................................................. 269 6.4.4 Transient Models of Heating and Cooling ................................... 273 6.4.5 Discussion .................................................................................... 274 6.5 Rhine Graben Cross Section ............................................................... 277 Daniel Pribnow 6.5.1 Rhine Graben: Introduction and regional setting ......................... 277 6.5.2 Temperature Data Across the Upper Rhine Graben .................... 278 6.5.3 Model description and assumptions ............................................. 279 6.5.4 Results and Discussion ................................................................ 280 6.5.5 Discussion .................................................................................... 283 6.6 Thermal Transect of Continental Lithosphere in Canada .................... 287 Li Zhen Cheng and Giorgio Ranalli 6.6.1 Problem description ..................................................................... 287 6.6.2 Temperature in the lithosphere: a matter of uncertainty .............. 288 6.6.3 Model description ........................................................................ 290 6.6.4 Results and discussion ................................................................. 293 6.7 Waiwera Coastal Geothermal System ................................................. 297 Heinke SWfen and Michael Kuhn 6.7.1 Problem description ..................................................................... 297 6.7.2 Observations ................................................................................ 299 6.7.3 Model description and assumptions ............................................. 302 6.1.4 Results and Discussion ................................................................ 311 6.7.5 Conclusions ................................................................................. 316 References .......................................................................................................... 317 Index ................................................................................................................... 331 Contributing Authors IX Contributing Authors Jorn Bartels* Geothermie Neubrandenburg Ltd., PO Box 110120, D-17041 Neubrandenburg, Germany; [email protected] Li Zhen Cheng§ and Giorgio Ranalli Ottawa-Carleton Geoscience Centre, Carlton University, Ottawa Ontario K1 S 5B6, Canada; [email protected]: [email protected] Wen-Hsing Chiang Excel Info Tech, Inc., 20 Fairbanks, Suite 187, Irvine, CA 92618, USA; [email protected] Christoph Clauser and Hansgeorg Pape Applied Geophysics, Aachen University (RWTH), Lochnerstr. 4-20, D-52056 Aachen, Germany; c. [email protected]; [email protected] Suzanne J. Hurter Geoforschungszentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany; [email protected] Michael Kuhn, Wilfried Schneider, and Heinke Stofen Dept. of Water Management and Water Supply, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, D-21073 Hamburg, Germany; [email protected]: [email protected]: sto&[email protected] Volker Meyn German Petroleum Institute (IfE), Walter-Nernst-Str. 7, D-38678 Claus thal Zellerfeld, Germany; [email protected] Daniel F. C. Pribnow Shell International Exploration and Production B. V, Volmerlaan 8, Postbus 60, NL-2280 AB Rijswijk, The Netherlands; [email protected] * presiously at Aachen University (RTWH) § now at : GEOTOP, Universite de Montreal, Pavillon President Kennedy, Montreal, Quebec H2X 3 Y7, Montreal, Canada 1 Introduction Christoph Clauser and Jom Bartels SHE MAT (Simulator for HEat and MAss Transport) is an easy-to-use, general purpose reactive transport simulation code for a wide variety of thermal and hy drogeological problems in two and three dimensions. Specifically, SHEMAT solves coupled problems involving fluid flow, heat transfer, species transport, and chemical water-rock interaction in fluid-saturated porous media. It can handle a wide range of time scales. Therefore, it is useful to address both technical and geo logical processes. In particular, it offers special and attractive features for model ing steady-state and transient processes in hydro-geothermal reservoirs. This makes it well suited to predict the long-term behavior of heat mining installations in hot aquifers with highly saline brines. SHEMA T in its present form evolved from a fully coupled flow and heat transport model (Clauser 1988) which had been developed from the isothermal USGS 3-D groundwater model of Trescott and Larson (Trescott 1975; Trescott and Larson 1977). Transport of dissolved species, geochemical reactions between the solid and fluid phases, extended cou pling between the individual processes (most notably between porosity and per meability), and a convenient user interface (developed from Processing Modflow (Chiang and Kinzelbach 2001)) were added during several research projects funded by the German Science Foundation (DFG) under grant CL 12117 and the German Federal Ministries for Education, Science, Research, and Technology (BMBF) under grant 032 69 95A-D and for Economics and Technology (BMWi) under grant 0327095 (Bartels et al. 2002, Kuhn et al. 2002a). A number of reactive transport codes are available for isothermal problems fo cusing on, but not restricted to, groundwater remediation in shallow reservoirs, such as MOCDENSE (Sanford and Konikow 1989) coupled with PHREEQE (Parkhurst et al. 1980), CHEMFRONTS (Baverman et al. 1999), MIN3P (Mayer 1999), PHT3D (Pommer et al. 2001). Reactive transport codes addressing also heat transport are 3DHYDROGEOCHEM (Cheng and Yeh 1998), TOUGH2IEWASG (Battistelli et al. 1997), CHEM-TOUGH2 (White 1995; White and Mroczek 1998), and TOUGHREACT (Xu and Pruess 2001a,b; Xu et al. 2001). SHEMAT's advantage in respect to these codes, however, lies mainly in (l) the extended availability of coupling relations between reaction, flow, and transport via a novel and calibrated fractal relationship between porosity and per meability and a number of relations previously derived in literature for special re actions or rock types, and (2) the extended validity of the chemical reactions im plemented in SHEMA T for elevated temperature and high ionic strength of the solution (compared to TOUGH REACT, and CHEM-TOUGH2): 3DHYDROGEOCHEM does not couple permeability to changes in porosity due to chemical reactions at all, while TOUGHREACT, TOUGH2/EW ASG and CHEM-TOUGH2 use empirical approaches or relations derived from simplified pore space geometries valid for a very restricted type of reactions only (Weir and C. Clauser (ed.), Numerical Simulation of Reactive Flow in Hot Aquifers © Springer-Verlag Berlin Heidelberg 2003

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.