N u m e r i c a l M e t h o d s P h o t o n i c s in Andrei V. Lavrinenko Technical University of Denmark, Kongens Lyngby Jesper Lægsgaard Technical University of Denmark, Kongens Lyngby Niels Gregersen Technical University of Denmark, Kongens Lyngby Frank Schmidt Zuse Institute, Berlin, Germany Thomas Søndergaard Aalborg University, Aalborg, Denmark Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2015 by Taylor & Francis Group, LLC MATLAB® and Simulink® are trademarks of the MathWorks, Inc. and are used with permission. The Math- Works does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship by the MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink® software CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140707 International Standard Book Number-13: 978-1-4665-6389-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2015 by Taylor & Francis Group, LLC OPTICAL SCIENCES AND APPLICATIONS OF LIGHT Series Editor James C. Wyant Numerical Methods in Photonics, Andrei V. Lavrinenko, Jesper Lægsgaard, Niels Gregersen, Frank Schmidt, and Thomas Søndergaard Please visit our website www.crcpress.com for a full list of titles © 2015 by Taylor & Francis Group, LLC Dedication Toourfamiliesandparents © 2015 by Taylor & Francis Group, LLC Contents SeriesPreface.........................................................................xiii Preface .................................................................................xv Authors............................................................................... xvii Acronyms.............................................................................xix Chapter1 Introduction..............................................................1 Chapter2 Maxwell’sEquations ....................................................5 2.1 Notation............................................................5 2.2 Maxwell’sEquations..............................................5 2.3 MaterialEquations................................................6 2.4 FrequencyDomain................................................7 2.5 1Dand2DMaxwell’sEquations.................................9 2.6 WaveEquations ..................................................11 2.7 WaveguidesandEigenmodes....................................13 2.7.1 EigenvalueProblem.....................................14 2.7.2 SlabWaveguides ........................................16 2.7.3 BoundaryConditionsandEigenmodeClasses.........17 2.7.4 Orthogonality............................................18 References...............................................................22 Chapter3 Finite-DifferenceTime-DomainMethod..............................23 3.1 Introduction.......................................................23 3.1.1 Finite-DifferenceApproximationsofDerivatives .....24 3.1.2 Finite-DifferenceApproximationof1D Maxwell’sEquations....................................27 3.1.3 Fortran,C,MATLAB(cid:2),Etc.,Adaptationofthe FDTDMethod...........................................30 3.1.4 FDTDMethodin3D....................................31 3.1.5 FDTDMethodin2D....................................34 3.2 NumericalDispersionandStabilityAnalysisofthe FDTDMethod....................................................34 3.2.1 DispersionEquationin3D..............................35 3.2.2 NumericalStabilityCriteria.............................37 3.2.3 Divergence-FreeCharacteroftheFDTDMethod .....39 3.3 MakingYourOwn1DFDTD....................................42 3.3.1 Step1:SettingMaterialPropertiesonaGrid..........43 3.3.2 Step2:SettingSourcesandDetectors..................46 vii © 2015 by Taylor & Francis Group, LLC viii Contents 3.3.3 Step3:EvolvingFields .................................48 3.3.4 Step4:PostprocessingofInformation .................49 3.4 AbsorbingBoundaryConditions................................50 3.4.1 AnalyticalAbsorbingBoundaryConditions...........51 3.4.2 PerfectlyMatchedLayer:BasicIdea...................52 3.4.3 PerfectlyMatchedLayer:Generalizationand Realization...............................................55 3.5 FDTDMethodforMaterialswithFrequencyDispersion......58 3.5.1 FrequencyDispersionModels..........................58 3.5.1.1 DebyeMaterial ...............................58 3.5.1.2 DrudeModel..................................59 3.5.1.3 LorentzModel................................60 3.5.2 NumericalImplementationofFrequency DispersioninFDTDthroughAuxiliaryEquation .....60 3.5.2.1 DebyeMaterial ...............................61 3.5.2.2 DrudeModelofDispersion..................63 3.5.2.3 LorentzModelofDispersion ................63 3.5.3 LinearPolarizationModelforDispersive MaterialsinFDTD ......................................64 3.5.4 PiecewiseLinearRecursiveConvolution Scheme...................................................66 3.6 FDTDMethodforNonlinearMaterials,Materialswith Gain,andLasing .................................................67 3.6.1 NonlinearPolarizationinFDTD........................67 3.6.2 MediumwithGain:PhenomenologicalApproach inFDTD .................................................69 3.6.3 LasinginFDTD.........................................69 3.7 Conclusion........................................................71 Exercises ................................................................71 References...............................................................74 Chapter4 Finite-DifferenceModellingofStraightWaveguides.................77 4.1 Introduction.......................................................77 4.2 GeneralConsiderations ..........................................77 4.2.1 TimeDomainversusFrequencyDomain ..............77 4.2.2 Finite-DifferenceMethodsforStraight Waveguides..............................................78 4.3 ModifiedFinite-DifferenceOperators...........................80 4.3.1 DiscretizingtheScalarWaveEquation.................80 4.3.2 InclusionofDiscontinuities:GeneralFormalism......83 4.3.3 InclusionofDiscontinuities:TECase..................86 4.3.4 InclusionofDiscontinuities:TMCase.................87 4.4 NumericalLinearAlgebrainMATLAB........................88 4.4.1 SparseMatrices..........................................88 4.4.2 DirectandIterativeEigensolvers.......................89 © 2015 by Taylor & Francis Group, LLC Contents ix 4.5 2DWaveguidesandtheYeeMesh ..............................92 4.5.1 YeeMesh ................................................92 4.5.2 DielectricFunctionAveraging..........................95 4.5.3 UseofMirrorSymmetries..............................99 Exercises .............................................................. 102 References............................................................. 106 Chapter5 ModellingofNonlinearPropagationinWaveguides................ 107 5.1 Introduction..................................................... 107 5.2 Formalism ...................................................... 108 5.2.1 GeneralPropagationEquation........................ 108 5.2.2 PulsePowerandPulseEnergy........................ 110 5.3 NonlinearPolarization......................................... 111 5.3.1 NonlinearProcesses................................... 112 5.3.2 χ(3)NonlinearProcesses .............................. 114 5.3.3 Single-ModePropagationModel..................... 115 5.4 NonlinearSchrödingerEquation .............................. 120 5.4.1 DerivationoftheNLSEquation...................... 120 5.4.2 DispersionandSelf-PhaseModulation .............. 122 5.4.3 OpticalSolitons........................................ 124 5.4.4 SolitonsandRamanEffects........................... 125 5.4.5 Self-Steepening........................................ 126 5.4.6 ConservationLaws.................................... 127 5.5 NumericalImplementation .................................... 129 5.5.1 FourierMethod........................................ 129 5.5.2 SteppingTechniques.................................. 130 5.5.3 DiscreteFourierGrids................................. 132 5.5.4 ImplementationinMATLAB......................... 134 Exercises .............................................................. 136 References............................................................. 137 Chapter6 TheModalMethod ................................................... 139 6.1 Introduction..................................................... 139 6.2 Eigenmodes..................................................... 140 6.3 1DGeometry................................................... 142 6.3.1 RecursiveMatrixFormalism.......................... 143 6.3.2 1DInterface............................................ 145 6.3.3 MultilayerStructure................................... 146 6.3.4 1DCavity.............................................. 149 6.4 2DGeometry................................................... 150 6.4.1 Plane-WaveExpansion................................ 151 6.4.1.1 Li’sFactorizationRules.................... 151 6.4.1.2 EigenvalueProblem ........................ 153 6.4.2 Semi-AnalyticalApproach............................ 157 © 2015 by Taylor & Francis Group, LLC x Contents 6.4.3 Interface................................................ 162 6.4.4 SMatrixTheory....................................... 166 6.4.5 AbsorbingBoundaryConditions ..................... 171 6.5 PeriodicStructures............................................. 176 6.5.1 BlochModes........................................... 177 6.5.2 Classification .......................................... 180 6.5.3 Interface................................................ 182 6.5.4 FieldProfileinaPeriodicElement................... 184 6.6 CurrentSources ................................................ 185 6.6.1 UniformLayer......................................... 186 6.6.2 MultilayerGeometry.................................. 188 6.7 3DGeometries ................................................. 190 Exercises .............................................................. 191 References............................................................. 194 Chapter7 Green’sFunctionIntegralEquationMethodsfor ElectromagneticScatteringProblems ............................... 197 7.1 Introduction..................................................... 197 7.2 TheoreticalFoundation ........................................ 198 7.3 Green’sFunctionAreaIntegralEquationMethod............ 198 7.4 Green’sFunctionVolumeIntegralEquationMethod......... 204 7.5 Green’sFunctionSurfaceIntegralEquation Method(2D).................................................... 209 7.5.1 SurfaceIntegralEquations............................ 209 7.5.2 CalculatingtheFieldandNormalDerivative attheBoundary........................................ 212 7.6 Constructionof2DGreen’sFunctionsfor LayeredStructures ............................................. 218 7.6.1 Plane-WaveExpansionoftheFree-Space Green’sFunction ...................................... 219 7.6.2 2DTE-PolarizedScalarGreen’sFunctionfora LayeredStructure...................................... 222 7.6.3 2DTM-PolarizedScalarGreen’sFunctionfora LayeredStructure...................................... 224 7.6.4 FresnelReflectionandTransmissionCoefficients foraFewSimpleGeometries......................... 224 7.6.5 CalculatingtheSommerfeldIntegral................. 226 7.6.6 Far-FieldApproximation.............................. 228 7.6.7 ExcitationofBoundWaveguideModes ............. 230 7.7 ConstructionofthePeriodicGreen’sFunction............... 233 7.7.1 1DPeriodicScalarGreen’sFunctionfora LayeredStructure...................................... 234 7.8 ReflectionfromaPeriodicSurfaceMicrostructure........... 234 7.8.1 CalculatingReflectionandTransmission............ 237 © 2015 by Taylor & Francis Group, LLC