ebook img

Numerical Methods for Ordinary Differential Equations PDF

540 Pages·2016·5.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations --------- THIRD EDITION - - - - - J.C. Butcher WILEY (cid:2) TrimSize:152mmx229mm Butcher f01.tex V1-05/31/2016 10:41A.M. Pagei Numerical Methods for Ordinary Differential Equations (cid:2) (cid:2) (cid:2) (cid:2) TrimSize:152mmx229mm Butcher f01.tex V1-05/31/2016 10:41A.M. Pageiii Numerical Methods for Ordinary Differential Equations J. C. Butcher (cid:2) (cid:2) (cid:2) (cid:2) TrimSize:152mmx229mm Butcher f01.tex V1-05/31/2016 10:41A.M. Pageiv Thiseditionfirstpublished2016 ©2016,JohnWiley&Sons,Ltd FirstEditionpublishedin2003 SecondEditionpublishedin2008 Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby theUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksof theirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessof thecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessional servicesandneitherthepublishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessional adviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. (cid:2) (cid:2) LibraryofCongressCataloging-in-Publicationdataappliedfor ISBN:9781119121503 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. 1 2016 (cid:2) Contents Foreword xiii Prefacetothefirstedition xv Prefacetothesecondedition xix Prefacetothethirdedition xxi 1 DifferentialandDifferenceEquations 1 10 DifferentialEquationProblems 1 100 Introductiontodifferentialequations 1 101 TheKeplerproblem 4 102 Aproblemarisingfromthemethodoflines 7 103 Thesimplependulum 11 104 Achemicalkineticsproblem 14 105 TheVanderPolequationandlimitcycles 16 106 TheLotka–Volterraproblemandperiodicorbits 18 107 TheEulerequationsofrigidbodyrotation 20 11 DifferentialEquationTheory 22 110 Existenceanduniquenessofsolutions 22 111 Linearsystemsofdifferentialequations 24 112 Stiffdifferentialequations 26 12 FurtherEvolutionaryProblems 28 120 Many-bodygravitationalproblems 28 121 Delayproblemsanddiscontinuoussolutions 30 122 Problemsevolvingonasphere 33 123 FurtherHamiltonianproblems 35 124 Furtherdifferential-algebraicproblems 36 13 DifferenceEquationProblems 38 130 Introductiontodifferenceequations 38 131 Alinearproblem 39 132 TheFibonaccidifferenceequation 40 133 Threequadraticproblems 40 134 Iterativesolutionsofapolynomialequation 41 135 Thearithmetic-geometricmean 43 vi NUMERICALMETHODSFORORDINARYDIFFERENTIALEQUATIONS 14 DifferenceEquationTheory 44 140 Lineardifferenceequations 44 141 Constantcoefficients 45 142 Powersofmatrices 46 15 LocationofPolynomialZeros 50 150 Introduction 50 151 Lefthalf-planeresults 50 152 Unitdiscresults 52 Concludingremarks 53 2 NumericalDifferentialEquationMethods 55 20 TheEulerMethod 55 200 IntroductiontotheEulermethod 55 201 Somenumericalexperiments 58 202 Calculationswithstepsizecontrol 61 203 Calculationswithmildlystiffproblems 65 204 CalculationswiththeimplicitEulermethod 68 21 AnalysisoftheEulerMethod 70 210 FormulationoftheEulermethod 70 211 Localtruncationerror 71 212 Globaltruncationerror 72 213 ConvergenceoftheEulermethod 73 214 Orderofconvergence 74 215 Asymptoticerrorformula 78 216 Stabilitycharacteristics 79 217 Localtruncationerrorestimation 84 218 Roundingerror 85 22 GeneralizationsoftheEulerMethod 90 220 Introduction 90 221 Morecomputationsinastep 90 222 Greaterdependenceonpreviousvalues 92 223 Useofhigherderivatives 92 224 Multistep–multistage–multiderivativemethods 94 225 Implicitmethods 95 226 Localerrorestimates 96 23 Runge–KuttaMethods 97 230 Historicalintroduction 97 231 Secondordermethods 98 232 Thecoefficienttableau 98 233 Thirdordermethods 99 234 Introductiontoorderconditions 100 235 Fourthordermethods 101 236 Higherorders 103 237 ImplicitRunge–Kuttamethods 103 238 Stabilitycharacteristics 104 239 Numericalexamples 108 CONTENTS vii 24 LinearMultistepMethods 111 240 Historicalintroduction 111 241 Adamsmethods 111 242 Generalformoflinearmultistepmethods 113 243 Consistency,stabilityandconvergence 113 244 Predictor–correctorAdamsmethods 115 245 TheMilnedevice 117 246 Startingmethods 118 247 Numericalexamples 119 25 TaylorSeriesMethods 120 250 IntroductiontoTaylorseriesmethods 120 251 Manipulationofpowerseries 121 252 AnexampleofaTaylorseriessolution 122 253 Othermethodsusinghigherderivatives 123 254 Theuseoffderivatives 126 255 Furthernumericalexamples 126 26 MultivalueMulitistageMethods 128 260 Historicalintroduction 128 261 PseudoRunge–Kuttamethods 128 262 Two-stepRunge–Kuttamethods 129 263 Generalizedlinearmultistepmethods 130 264 Generallinearmethods 131 265 Numericalexamples 133 27 IntroductiontoImplementation 135 270 Choiceofmethod 135 271 Variablestepsize 136 272 Interpolation 138 273 ExperimentswiththeKeplerproblem 138 274 Experimentswithadiscontinuousproblem 139 Concludingremarks 142 3 Runge–KuttaMethods 143 30 Preliminaries 143 300 Treesandrootedtrees 143 301 Trees,forestsandnotationsfortrees 146 302 Centralityandcentres 147 303 Enumerationoftreesandunrootedtrees 150 304 Functionsontrees 153 305 Somecombinatorialquestions 155 306 Labelledtreesanddirectedgraphs 156 307 Differentiation 159 308 Taylor’stheorem 161 viii NUMERICALMETHODSFORORDINARYDIFFERENTIALEQUATIONS 31 OrderConditions 163 310 Elementarydifferentials 163 311 TheTaylorexpansionoftheexactsolution 166 312 Elementaryweights 168 313 TheTaylorexpansionoftheapproximatesolution 171 314 Independenceoftheelementarydifferentials 174 315 Conditionsfororder 174 316 Orderconditionsforscalarproblems 175 317 Independenceofelementaryweights 178 318 Localtruncationerror 180 319 Globaltruncationerror 181 32 LowOrderExplicitMethods 185 320 Methodsoforderslessthan4 185 321 Simplifyingassumptions 186 322 Methodsoforder4 189 323 Newmethodsfromold 195 324 Orderbarriers 200 325 Methodsoforder5 204 326 Methodsoforder6 206 327 Methodsofordergreaterthan6 209 33 Runge–KuttaMethodswithErrorEstimates 211 330 Introduction 211 331 Richardsonerrorestimates 211 332 Methodswithbuilt-inestimates 214 333 Aclassoferror-estimatingmethods 215 334 ThemethodsofFehlberg 221 335 ThemethodsofVerner 223 336 ThemethodsofDormandandPrince 223 34 ImplicitRunge–KuttaMethods 226 340 Introduction 226 341 Solvabilityofimplicitequations 227 342 MethodsbasedonGaussianquadrature 228 343 Reflectedmethods 233 344 MethodsbasedonRadauandLobattoquadrature 236 35 StabilityofImplicitRunge–KuttaMethods 243 350 A-stability,A(α)-stabilityandL-stability 243 351 CriteriaforA-stability 244 352 Pade´approximationstotheexponentialfunction 245 353 A-stabilityofGaussandrelatedmethods 252 354 Orderstars 253 355 OrderarrowsandtheEhlebarrier 256 356 AN-stability 259 357 Non-linearstability 262 358 BN-stabilityofcollocationmethods 265 359 TheV andW transformations 267 CONTENTS ix 36 ImplementableImplicitRunge–KuttaMethods 272 360 ImplementationofimplicitRunge–Kuttamethods 272 361 DiagonallyimplicitRunge–Kuttamethods 273 362 Theimportanceofhighstageorder 274 363 Singlyimplicitmethods 278 364 Generalizationsofsinglyimplicitmethods 283 365 EffectiveorderandDESIREmethods 285 37 ImplementationIssues 288 370 Introduction 288 371 Optimalsequences 288 372 Acceptanceandrejectionofsteps 290 373 Errorperstepversuserrorperunitstep 291 374 Control-theoreticconsiderations 292 375 Solvingtheimplicitequations 293 38 AlgebraicPropertiesofRunge–KuttaMethods 296 380 Motivation 296 381 EquivalenceclassesofRunge–Kuttamethods 297 382 ThegroupofRunge–Kuttatableaux 299 383 TheRunge–Kuttagroup 302 384 Ahomomorphismbetweentwogroups 308 385 AgeneralizationofG1 309 386 SomespecialelementsofG 311 387 Somesubgroupsandquotientgroups 314 388 Analgebraicinterpretationofeffectiveorder 316 39 SymplecticRunge–KuttaMethods 323 390 Maintainingquadraticinvariants 323 391 Hamiltonianmechanicsandsymplecticmaps 324 392 Applicationstovariationalproblems 325 393 Examplesofsymplecticmethods 326 394 Orderconditions 327 395 Experimentswithsymplecticmethods 328 Concludingremarks 331 4 LinearMultistepMethods 333 40 Preliminaries 333 400 Fundamentals 333 401 Startingmethods 334 402 Convergence 335 403 Stability 336 404 Consistency 336 405 Necessityofconditionsforconvergence 338 406 Sufficiencyofconditionsforconvergence 339 41 TheOrderofLinearMultistepMethods 344 410 Criteriafororder 344 411 Derivationofmethods 346 412 Backwarddifferencemethods 347

Description:
A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.