ebook img

Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms PDF

471 Pages·2012·6.616 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms

numerical methods This page intentionally left blank NUMERICAL METHODS DESIGN, ANALYSIS, AND COMPUTER IMPLEMENTATION OF ALGORITHMS ANNE GREENBAUM TIMOTHY P. CHARTIER PRINCETON UNIVERSITY PRESS • PRINCETON AND OXFORD Copyright(cid:2)c 2012byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet,Woodstock, OxfordshireOX201TW press.princeton.edu CoverimagecourtesyoftheUniversityofSheffieldandAnsysUK. AllRightsReserved LibraryofCongressCataloging-in-PublicationData Greenbaum,Anne. Numericalmethods:design,analysis,andcomputerimplementationofalgorithms/ AnneGreenbaum,TimothyP.Chartier. p.cm. ISBN978-0-691-15122-9(hbk.:alk.paper) 1.Numericalanalysis. I.Chartier,TimothyP.,1969– II.Title. QA297.G152012 518–dc23 2011045732 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinSabon Printedonacid-freepaper.∞ TypesetbySRNovaPvtLtd,Bangalore,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ToTanya forherconstantloveandsupport, whetherlifeiswellconditionedorunstable. —TC This page intentionally left blank CONTENTS Preface xiii 1 MATHEMATICAL MODELING 1 1.1 ModelinginComputerAnimation 2 1.1.1 AModelRobe 2 1.2 ModelinginPhysics:RadiationTransport 4 1.3 ModelinginSports 6 1.4 EcologicalModels 8 1.5 ModelingaWebSurferandGoogle 11 1.5.1 TheVectorSpaceModel 11 1.5.2 Google’sPageRank 13 1.6 Chapter1Exercises 14 2 BASIC OPERATIONS WITH MATLAB 19 2.1 LaunchingMATLAB 19 2.2 Vectors 20 2.3 GettingHelp 22 2.4 Matrices 23 2.5 CreatingandRunning.mFiles 24 2.6 Comments 25 2.7 Plotting 25 2.8 CreatingYourOwnFunctions 27 2.9 Printing 28 2.10 MoreLoopsandConditionals 29 2.11 ClearingVariables 31 2.12 LoggingYourSession 31 2.13 MoreAdvancedCommands 31 2.14 Chapter2Exercises 32 3 MONTE CARLO METHODS 41 3.1 AMathematicalGameofCards 41 3.1.1 TheOddsinTexasHoldem 42 3.2 BasicStatistics 46 3.2.1 DiscreteRandomVariables 48 3.2.2 ContinuousRandomVariables 51 3.2.3 TheCentralLimitTheorem 53 3.3 MonteCarloIntegration 56 viii CONTENTS 3.3.1 Buffon’sNeedle 56 3.3.2 Estimatingπ 58 3.3.3 AnotherExampleofMonteCarloIntegration 60 3.4 MonteCarloSimulationofWebSurfing 64 3.5 Chapter3Exercises 67 4 SOLUTION OF A SINGLE NONLINEAR EQUATION IN ONE UNKNOWN 71 4.1 Bisection 75 4.2 Taylor’sTheorem 80 4.3 Newton’sMethod 83 4.4 Quasi-NewtonMethods 89 4.4.1 AvoidingDerivatives 89 4.4.2 ConstantSlopeMethod 89 4.4.3 SecantMethod 90 4.5 AnalysisofFixedPointMethods 93 4.6 Fractals,JuliaSets,andMandelbrotSets 98 4.7 Chapter4Exercises 102 5 FLOATING-POINT ARITHMETIC 107 5.1 CostlyDisastersCausedbyRoundingErrors 108 5.2 BinaryRepresentationandBase2Arithmetic 110 5.3 Floating-PointRepresentation 112 5.4 IEEEFloating-PointArithmetic 114 5.5 Rounding 116 5.6 CorrectlyRoundedFloating-PointOperations 118 5.7 Exceptions 119 5.8 Chapter5Exercises 120 6 CONDITIONING OF PROBLEMS; STABILITY OF ALGORITHMS 124 6.1 ConditioningofProblems 125 6.2 StabilityofAlgorithms 126 6.3 Chapter6Exercises 129 7 DIRECT METHODS FOR SOLVING LINEAR SYSTEMS AND LEAST SQUARES PROBLEMS 131 7.1 ReviewofMatrixMultiplication 132 7.2 GaussianElimination 133 7.2.1 OperationCounts 137 7.2.2 LUFactorization 139 7.2.3 Pivoting 141 7.2.4 BandedMatricesandMatricesforWhich PivotingIsNotRequired 144 CONTENTS ix 7.2.5 ImplementationConsiderationsforHigh Performance 148 7.3 OtherMethodsforSolving Ax=b 151 7.4 ConditioningofLinearSystems 154 7.4.1 Norms 154 7.4.2 SensitivityofSolutionsofLinearSystems 158 7.5 StabilityofGaussianEliminationwithPartialPivoting 164 7.6 LeastSquaresProblems 166 7.6.1 TheNormalEquations 167 7.6.2 QRDecomposition 168 7.6.3 FittingPolynomialstoData 171 7.7 Chapter7Exercises 175 8 POLYNOMIAL AND PIECEWISE POLYNOMIAL INTERPOLATION 181 8.1 TheVandermondeSystem 181 8.2 TheLagrangeFormoftheInterpolationPolynomial 181 8.3 TheNewtonFormoftheInterpolationPolynomial 185 8.3.1 DividedDifferences 187 8.4 TheErrorinPolynomialInterpolation 190 8.5 InterpolationatChebyshevPointsandchebfun 192 8.6 PiecewisePolynomialInterpolation 197 8.6.1 PiecewiseCubicHermiteInterpolation 200 8.6.2 CubicSplineInterpolation 201 8.7 SomeApplications 204 8.8 Chapter8Exercises 206 9 NUMERICAL DIFFERENTIATION AND RICHARDSON EXTRAPOLATION 212 9.1 NumericalDifferentiation 213 9.2 RichardsonExtrapolation 221 9.3 Chapter9Exercises 225 10 NUMERICAL INTEGRATION 227 10.1 Newton–CotesFormulas 227 10.2 FormulasBasedonPiecewisePolynomialInterpolation 232 10.3 GaussQuadrature 234 10.3.1 OrthogonalPolynomials 236 10.4 Clenshaw–CurtisQuadrature 240 10.5 RombergIntegration 242 10.6 PeriodicFunctionsandtheEuler–MaclaurinFormula 243 10.7 Singularities 247 10.8 Chapter10Exercises 248

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.