ebook img

numerical damage analysis of aeronautical composite structures using multiscale methods PDF

221 Pages·2015·15.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview numerical damage analysis of aeronautical composite structures using multiscale methods

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE Darko Ivanˇcevi´c NUMERICAL DAMAGE ANALYSIS OF AERONAUTICAL COMPOSITE STRUCTURES USING MULTISCALE METHODS doctoral thesis Zagreb, 2015 FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE Darko Ivanˇcevi´c NUMERICAL DAMAGE ANALYSIS OF AERONAUTICAL COMPOSITE STRUCTURES USING MULTISCALE METHODS doctoral thesis Supervisor: Prof. DSc. Ivica Smojver Zagreb, 2015 FAKULTET STROJARSTVA I BRODOGRADNJE Darko Ivanˇcevi´c ˇ ˇ ´ NUMERICKA ANALIZA OSTECENJA KOMPOZITNIH ZRAKOPLOVNIH KONSTRUKCIJA PRIMJENOM ˇ VISERAZINSKIH METODA doktorski rad Mentor: Prof. dr. sc. Ivica Smojver Zagreb, 2015 BIBLIOGRAPHY DATA UDC: 519.6:629.7 Keywords: High Fidelity Generalized Method of Cells, composite structures, micromechanics, impact damage, multiscale analysis. Scientific area: Technical sciences Scientific field: Aeronautical engineering, rocket and space technologies Institution: Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb Supervisor: Prof. DSc. Ivica Smojver Number of pages: 185 Number of pages (in total): 220 Number of figures: 115 Number of tables: 24 Number of references: 101 Date of public defense: 08.04.2015 Committee members: Prof. DSc. Tomislav Filetin, University of Zagreb, Croatia Prof. DSc. Vassilis Kostopoulos, University of Patras, Greece Prof. DSc. Ivica Smojver, University of Za- greb, Croatia Archive: Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia Acknowledgements Foremost, I would like to express my deepest gratitude and thanks to my Thesis supervisor, Prof. DSc. Ivica Smojver, for the guidance, support and constructive suggestions during the research which resulted in this Thesis. I would also like to thank the Committee members, Prof. DSc. Tomislav Filetin and Prof. DSc. Vassilis Kostopoulos for the suggestions and for their time to read the Thesis. The suggestions of Prof. DSc. Jurica Sori´c during the preliminary dissertation topic defense are also much appreciated. My sincere thanks also go to Prof. DSc. Sanja Singer and dipl. ing. Vedran No- vakovi´c for their unselfish support and advices during implementation of the mathematical parts of the research. I would also like to thank my colleagues and friends at the Faculty of Mechanical Engineering and Naval Architecture for creating an enjoyable and productive working environment. Special thanks go to Prof. DSc. Milan Vrdoljak for the help during my struggle with the LaTeX coding. Finally, I would like to thank my family and my fiance Ana for their support during this demanding period. Preface This Thesis has been written entirely by me and contains the results obtained during my work as research assistant at the Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. The research activities have been performed employing the knowledge obtained during my undergraduate, graduate and postgraduate studies at the Faculty of Mechanical Engineering and Naval Architecture and using the cited references. The research presented in this Thesis has been supported by the Ministry of Science, Education and Sports of the Republic of Croatia within the scientific project ”Numerical Modelling of Non-isotropic Continua”. Zagreb, March 2015 Darko Ivanˇcevi´c Contents Preface v Contents vi List of Figures ix List of Tables xvii List of Symbols xix Summary xxv Proˇsireni saˇzetak xxvi 1. Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Objectives and Thesis hypothesis . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. Multiscale methodology 11 2.1 Multiscale approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Micromechanics of composite materials . . . . . . . . . . . . . . . . . . . 13 2.3 Method of Cells micromechanical models . . . . . . . . . . . . . . . . . . 15 2.4 High Fidelity Generalized Method of Cells . . . . . . . . . . . . . . . . . 19 2.5 Application of HFGMC micromechanical model . . . . . . . . . . . . . . 31 2.6 Multiscale implementation of HFGMC . . . . . . . . . . . . . . . . . . . 35 vi vii 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3. Damage initiation modelling 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Ply-level failure initiation criteria . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Progressive damage and failure model in Abaqus . . . . . . . . . . . . . . 49 3.4 Damage initiation at the micromechanical level . . . . . . . . . . . . . . 51 3.5 Evaluation of micromechanical failure criteria . . . . . . . . . . . . . . . 61 3.6 Effects of unit cell discretization and morphology . . . . . . . . . . . . . 67 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Micromechanical progressive degradation models 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Mixed-Mode Continuum Damage Mechanics (MMCDM) model . . . . . 73 4.3 Smeared Crack Band damage model . . . . . . . . . . . . . . . . . . . . . 78 4.4 Application of MMCDM theory . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Application of the Crack Band damage model . . . . . . . . . . . . . . . 97 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5. Multiscale failure analyses 106 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Tensile loading of stringer reinforced composite panel . . . . . . . . . . . 107 5.3 Numerical bird strike modelling technique in Abaqus/Explicit . . . . . . 115 5.4 Soft body impact - numerical model and experimental results . . . . . . . 118 5.5 Validation of micromechanical failure criteria in impact analyses . . . . . 121 5.6 Multiscale impact damage analyses . . . . . . . . . . . . . . . . . . . . . 125 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6. Modelling of strain rate effects using HFGMC 147 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2 Experimental evidence of rate dependent properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3 Modelling of strain rate dependence . . . . . . . . . . . . . . . . . . . . . 150 6.4 Implementation into HFGMC . . . . . . . . . . . . . . . . . . . . . . . . 153 6.5 Strain rate effect on elasticity properties . . . . . . . . . . . . . . . . . . 156 viii 6.6 Modelling of epoxy composite strain rate nonlinearities . . . . . . . . . . 158 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7. Conclusion 165 7.1 Original scientific contribution . . . . . . . . . . . . . . . . . . . . . . . . 167 7.2 Recommendations for further research . . . . . . . . . . . . . . . . . . . 168 A Appendix 170 Biography 173 Zˇivotopis 174 Bibliography 175 List of Figures 1.1 Weight percentage of composite materials in aeronautical structures [Kas- sapoglou, 2010]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Airbus A350 structural materials [McConnell, 2011]. . . . . . . . . . . . . 3 1.3 Engineering application of failure criteria, after [Sun et al., 1996]. . . . . 4 1.4 Schematicrepresentationofthelengthscalesinmicromechanicalstructural analyses [Schwab et al., 2014]. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Micromechanical models used in multiscale approaches [Aboudi et al., 2012]. 12 2.2 Two-scale methodology applied in this Thesis. . . . . . . . . . . . . . . . 13 2.3 RUC concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 RUC discretization by MOC, after [Aboudi et al., 2012]. . . . . . . . . . 16 2.5 Comparison of GMC and HFGMC - contours of σ under prescribed ε¯ 22 22 = 1, after [Matzenmiller and Kurnatowski, 2009]. . . . . . . . . . . . . . 19 2.6 HFGMC discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Subcell displacement and traction components. . . . . . . . . . . . . . . . 23 2.8 Evaluated RUC morphologies. . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9 Simplified VUMAT-HFGMC flowchart. . . . . . . . . . . . . . . . . . . . 36 2.10 HFGMC flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.11 HFGMC preprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.12 Sparsity of the transverse global stiffness matrix. . . . . . . . . . . . . . . 40 3.1 Interference of matrix cracks and delamination [Talreja and Singh, 2007]. 43 ix

Description:
3.3 Progressive damage and failure model in Abaqus 49. 3.4 Damage pretpostavlja pojednostavljenu i savršeno uredenu periodicnu mikrostrukturu materijala uz rubne uvjete .. Enhanced reliability of numerical procedures employed in the design of composite structures is one of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.