ebook img

Numerical Approximation of Partial Differential Equations PDF

541 Pages·2016·4.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Approximation of Partial Differential Equations

Texts in Applied Mathematics 64 Sören Bartels Numerical Approximation of Partial Diff erential Equations Texts in Applied Mathematics Volume 64 Editors-in-chief: StuartAntman,UniversityofMaryland,CollegePark,USA LeslieGreengard,NewYorkUniversity,NewYorkCity,USA PhilipHolmes,PrincetonUniversity,Princeton,USA SeriesEditors: JohnB.Bell,LawrenceBerkeleyNationalLab,Berkeley,USA JosephB.Keller,StanfordUniversity,Stanford,USA RobertKohn,NewYorkUniversity,NewYorkCity,USA PaulNewton,UniversityofSouthernCalifornia,LosAngeles,USA CharlesPeskin,NewYorkUniversity,NewYorkCity,USA RobertPego,CarnegieMellonUniversity,Pittburgh,USA LenyaRyzhik,StanfordUniversity,Stanford,USA AmitSinger,PrincetonUniversity,Princeton,USA AngelaStevens,UniversitätMünster,Münster,Germany AndrewStuart,UniversityofWarwick,Coventry,UK ThomasWitelski,DukeUniversity,Durham,USA StephenWright,UniversityofWisconsin-Madison,Madison,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/1214 SoRren Bartels Numerical Approximation of Partial Differential Equations 123 SoRrenBartels AngewandteMathematik Albert-Ludwigs-Universitaet Freiburg,Germany Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISSN0939-2475 ISSN2196-9949 (electronic) TextsinAppliedMathematics ISBN978-3-319-32353-4 ISBN978-3-319-32354-1 (eBook) DOI10.1007/978-3-319-32354-1 LibraryofCongressControlNumber:2016940376 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Musicians are like mathematicians. Every part has to be right forittowork,... –JeffBeck,2015 This textbook is meant to serve as an introduction to the numerical analysis and practical treatment of linear partial differential equations. It introduces the main concepts for discretizing prototypical partial differential equations and discusses theapplicationtomodelproblemsincontinuummechanicsandelectromagnetism. ShortMATLABimplementationsillustratethepracticalityofthenumericalmethods. Thefirstpartofthetextbookcoversthedevelopmentandanalysisofelementary finite difference methods, the mathematical theory for elliptic partial differential equations, and the constructionand numericalanalysis of finite elementmethods. The second part is devoted to iterative solution methods either by refining a triangulation locally to efficiently resolve corner singularities, or by solving the resulting linear system of equations via multilevel or domain decomposition techniques.Inthethirdpartofthetext,linearlyconstrainedandsingularlyperturbed boundaryvalueproblemsareinvestigated.Theirnumericaltreatmentisbasedona mathematicalframeworkforsaddle-pointproblemsandrequiresusingnonstandard finite element spaces. This leads to accurate numerical schemes for simulating nearly incompressible materials, thin elastic objects, electromagnetic fields, and turbulentflows. The reader is assumed to be familiar with basic numerical techniques such as interpolation, quadrature, sparse matrices, and iterative solution techniques for linear systems of equations, although this is not mandatory for understandingthe mainconcepts.Itisalsohelpfultohaveexperiencewithlinearfunctionalanalysis, propertiesofLebesgueandSobolevspaces,andtheoriesofexistenceandregularity forlinearpartialdifferentialequations.Thecorrespondingresultsneededinthistext areexplainedbutnotprovedindetail. Each of the three parts of the book can be used for a one-term lecture accom- paniedbytheoreticalandpracticaltutorials.Theproblemsandprojectsincludedin thetextmayrequireadditionalcommentsandsomespecificsupervisiondepending v vi Preface on the prerequisites of the students. Their main purpose is to provide ideas for individualworkandexperimentswiththeincludedMATLABcodesthatareavailable at http://extras.springer.com/2016/978-3-319-32353-4 In Chap.1 we discussthe mathematicaldescriptionoftransport,diffusion,and wave phenomena and their numerical simulation with finite difference methods. Weinvestigatetheaccuracyofthemethodsviastabilityandconsistencyproperties assuming the existence of regular solutions. Optimal order convergence rates for generalboundaryconditionswillbe addressedand thepracticalityofthe methods illustratedwithshortimplementations. Chapter 2 is concerned with general existence theories for solutions of partial differential equations using concepts from functional analysis and considering generalizations of classical derivatives based on a multidimensional integration- by-parts formula. The chapter introduces Sobolev spaces, discusses their main properties, states existence theories for elliptic second order linear partial differ- entialequations,andsketchesregularityresultsforsolutions. InChap.3weshowhowfiniteelementmethodsprovideanabstractframework forinterpolatingfunctionsorvectorfieldsinmultidimensionaldomains.Theyallow forspecifyingGalerkinmethodsforapproximatingpartialdifferentialequations.In combinationwithregularityresults,errorestimatesinvariousnormscanbeproved. Wediscusstheefficientimplementationofloworderandisoparametricmethodsin thecaseofstationaryandevolutionarymodelproblems. The starting point for Chap. 4 is the observation that convergence rates of standard numerical methods are suboptimal when the solution has corner singu- larities as in the case of elliptic equations on nonconvex domains. Optimal rates canbeobtainedbyusinglocallyrefinedtriangulationswhichareeitherspecifically constructed for particular domains or generated automatically via adaptive mesh- refinement algorithms. We introduce both approaches, analyze their convergence, andillustratetheirimplementation. InChap.5wemakeuseofthefactthatlinearsystemsofequationsresultingfrom finite element discretizations of partial differential equations are typically large, sparse, and ill-conditioned. Their efficient numerical solution exploits properties oftheunderlyingcontinuousproblemorasequenceofdiscretizations.Thechapter discussesmultigrid,domaindecomposition,andpreconditioningmethods. ThegoalofChap.6istoprovidealternativestostandardnumericalmethodsthat failtoprovideaccurateapproximationswhen partialdifferentialequationsinvolve constraintsdefinedbya differentialoperatororwhentheycontaintermsweighted byalargerparameter.GeneralizationsoftheLax–MilgramandCéalemmasprovide a concise framework for the development and analysis of appropriate numerical methods. Central to the construction is the validity of an inf-sup condition that definesacompatibilityrequirementoninvolvedfiniteelementspaces. In Chap. 7 we introduce and analyze stable finite element methods for dis- cretizingasaddle-pointformulationofthePoissonproblemandtheStokessystem. Moreover, we investigate characteristic properties of convection-dominatedequa- Preface vii tionsandtheirnumericalapproximationviaintroducingstabilizingterms.Flexible discontinuous Galerkin methods are derived and analyzed for a model Poisson equation. Simple implementations illustrate the performance of the numerical methods. The final Chap. 8 discusses the development, analysis, and implementation of numerical methods for boundary value problems in elasticity, electromagnetism, andfluidmechanics.Eachoftheconsideredproblemsrequiresasuitablenumerical treatmenttocapturerelevanteffectswithalownumberofdegreesoffreedom. ThistextbookresultsfromseveralcourseswhichIhavetaughtattheUniversity of Maryland at College Park, the Humboldt University of Berlin, the University of Bonn, and the Albert Ludwig University Freiburg. Besides many colleagues, assistants,andstudentsthathavecontributedtothedevelopmentofthistext,Iwould particularlyliketothankMarijoMilicevic,AlexisPapathanassopoulos,DirkPauly, andPatrickSchönfortheirhelpandsupport. Freiburg,Germany SörenBartels March2015 Contents PartI FiniteDifferencesandFiniteElements 1 FiniteDifferenceMethod.................................................... 3 1.1 TransportEquation..................................................... 3 1.1.1 MathematicalModel .......................................... 3 1.1.2 ExplicitSolution............................................... 4 1.1.3 DifferenceQuotients .......................................... 5 1.1.4 ApproximationScheme ....................................... 7 1.1.5 Stability ........................................................ 9 1.1.6 Convergence................................................... 11 1.1.7 CFLCondition................................................. 12 1.1.8 FourierStabilityAnalysis..................................... 13 1.2 HeatEquation........................................................... 15 1.2.1 MathematicalModel .......................................... 15 1.2.2 ExplicitSolution............................................... 17 1.2.3 PropertiesofSolutions........................................ 18 1.2.4 ExplicitScheme ............................................... 20 1.2.5 ImplicitScheme ............................................... 22 1.2.6 MidpointScheme.............................................. 26 1.2.7 Crank–NicolsonScheme...................................... 29 1.2.8 SourceTermsandBoundaryConditions..................... 33 1.3 WaveEquation.......................................................... 34 1.3.1 MathematicalModel .......................................... 34 1.3.2 ExplicitSolution............................................... 36 1.3.3 Well-Posedness................................................ 38 1.3.4 ExplicitScheme ............................................... 39 1.3.5 ImplicitScheme ............................................... 42 1.4 PoissonEquation....................................................... 44 1.4.1 MathematicalModel .......................................... 44 1.4.2 PoissonProblem............................................... 46 1.4.3 FiniteDifferenceScheme ..................................... 49 ix

Description:
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.