ebook img

Numerical Analysis Using R: Solutions to ODEs and PDEs PDF

646 Pages·2016·17.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Analysis Using R: Solutions to ODEs and PDEs

Numerical Analysis Using R Thisbookpresentsthelatestnumericalsolutionstoinitialvalueproblemsand boundary value problems described by ODEs and PDEs.The author offers practicalmethodsthatcanbeadaptedtosolvewiderangesofproblemsand illustratesthemintheincreasinglypopularopensourcecomputerlanguageR, allowingintegrationwithmorestatisticallybasedmethods. The book begins with standard techniques, followed by an overview of “high-resolution”flux limiters and WENO to solve problems with solutions exhibiting high-gradient phenomena. Meshless methods using radial basis functionsarethendiscussedinthecontextofscattereddatainterpolationand the solution of PDEs on irregular grids.Three detailed case studies demon- strate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems,this book is useful to students and practitioners in all areas of science and engineering, especially those using R.R Code is available for download from the book’s homepage. Graham W.Griffiths is a visiting professor in the Schoolof Engineeringand MathematicalSciences,CityUniversityLondon.Hisprimaryinterestsarein numerical methods and climate modeling, on which he has previously pub- lishedfourbooks.GriffithswasafounderofSpecialAnalysisandSimulation TechnologyLtd.andlaterbecamevicepresidentofoperationsandtechnology withAspenTech.HeisaCharteredEngineerandaFellowoftheInstituteof Measurement and Control and was granted Freedom of the City of London in1995. NUMERICAL ANALYSIS USING R Solutions to ODEs and PDEs Graham W. Griffiths CityUniversity,UnitedKingdom 32AvenueoftheAmericas,NewYork,NY10013 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107115613 ©GrahamW.Griffiths2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Names:Griffiths,GrahamW. Title:NumericalanalysisusingR:solutionstoODEsandPDEs/GrahamW.Griffiths, CityUniversity,UnitedKingdom. Description:NewYork,NY:CambridgeUniversityPress,2016.|Includesbibliographical referencesandindex. Identifiers:LCCN2015046150|ISBN9781107115613(hardback:alk.paper) Subjects:LCSH:Initialvalueproblems–Dataprocessing.|Boundaryvalueproblems– Dataprocessing.|Differentialequations–Dataprocessing.|Differentialequations, Partial–Dataprocessing.|Numericalanalysis.|R(Computerprogramlanguage) Classification:LCCQA378.G762016|DDC518.0285/5133–dc23 LCrecordavailableathttp://lccn.loc.gov/2015046150 ISBN978-1-107-11561-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLs forexternalorthird-partyInternetWebsitesreferredtointhispublicationanddoesnot guaranteethatanycontentonsuchWebsitesis,orwillremain,accurateorappropriate. Tothememoryofmydearson,PaulW.Griffiths(1977–2015). Contents Preface pagexv 1 ODEIntegrationMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction 1 1.2 EulerMethods 11 1.2.1 ForwardEuler 11 1.2.2 BackwardEuler 12 1.3 Runge–KuttaMethods 12 1.3.1 RKCoefficients 15 1.3.2 VariableStepSizeMethods 19 1.3.3 SHK:Sommeijer,VanDerHouwen,andKokMethod 36 1.4 LinearMultistepMethods(LMMs) 37 1.4.1 General 37 1.4.2 BackwardDifferentiationFormulas(BDFs) 38 1.4.3 NumericalDifferentiationFormulas(NDFs) 44 1.4.4 Convergence 46 1.4.5 AdamsMethods 60 1.5 TruncationErrorandOrderofIntegration 61 1.5.1 LMMTruncationError 62 1.5.2 VerificationofIntegrationOrder 66 1.6 Stiffness 69 1.7 HowtoChooseaNumericalIntegrator 69 1.A InstallationoftheRPackageRyacas 70 1.B InstallationoftheRPackagerSymPy 71 References 72 2 StabilityAnalysisofODEIntegrators . . . . . . . . . . . . . . . . . . . . 74 2.1 General 74 2.1.1 DahlquistBarrierTheorems 75 2.2 DahlquistTestProblem 75 2.3 EulerMethods 76 vii viii Contents 2.3.1 ForwardEuler 76 2.3.2 BackwardEuler 76 2.4 Runge–KuttaMethods 76 2.4.1 RK-1:First-OrderRunge–Kutta 76 2.4.2 RK-2:Second-OrderRunge–Kutta 79 2.4.3 RK-4:Fourth-OrderRunge–Kutta 80 2.4.4 RKF-54:FehlbergRunge–Kutta 83 2.4.5 SHK:Sommeijer,vanderHouwen,andKok 85 2.5 LinearMultistepMethods(LMMs) 87 2.5.1 General 87 2.5.2 BackwardDifferentiationFormulas(BDFs) 89 2.5.3 NumericalDifferentiationFormulas(NDFs) 95 2.5.4 AdamsMethods 97 References 101 3 NumericalSolutionofPDEs . . . . . . . . . . . . . . . . . . . . . . . . 102 3.1 SomePDEBasics 102 3.2 InitialandBoundaryConditions 103 3.3 TypesofPDESolutions 105 3.4 PDESubscriptNotation 105 3.5 AGeneralPDESystem 106 3.6 ClassificationofPDEs 107 3.7 Discretization 109 3.7.1 GeneralFiniteDifferenceTerminology 109 3.7.2 TheMesh 111 3.7.3 NonuniformGridSpacing 112 3.7.4 TheCourant–Friedrichs–LewyNumber 112 3.7.5 TheStencil 112 3.7.6 Upwinding 113 3.8 MethodofLines(MOL) 114 3.8.1 Introduction 114 3.8.2 FiniteDifferenceMatrices 115 3.8.3 MOL1D:CartesianCoordinates 123 3.8.4 MOL2D:CartesianCoordinates 141 3.8.5 MOL2D:PolarCoordinates 175 3.9 FullyDiscreteMethods 194 3.9.1 Introduction 194 3.9.2 OverviewofSomeCommonSchemes 194 3.9.3 ResultsfromSimulatingaHyperbolicEquation 197 3.10 FiniteVolumeMethod 207 3.10.1 General 207 3.10.2 Applicationtoa1DConservativeSystem 208 3.10.3 ApplicationtoaGeneralConservationLaw 210 3.11 InterpretationofResults 210 3.11.1 Verification 210 3.11.2 Validation 211 3.11.3 TruncationError 211

Description:
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.