NUMERICAL ANALYSIS OF ADHESIVELY BONDED SINGLE LAP JOINTS UNDER HIGH SPEED TENSILE LOADING A Thesis by Sean M. McCann Bachelor of Science, Southern Illinois University Carbondale, 2011 Submitted to the Department of Aerospace Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science December 2015 © Copyright 2015 by Sean M. McCann All Rights Reserved NUMERICAL ANALYSIS OF ADHESIVELY BONDED SINGLE LAP JOINTS UNDER HIGH SPEED TENSILE LOADING The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Aerospace Engineering. Suresh Keshavanarayana, Committee Chair Gerardo Olivares, Committee Member Anil Mahapatro, Committee Member Page | iii of 206 ABSTRACT Adhesively bonded joints pose complex solid mechanics problems through their inherent variations; material properties dependent on fabrication, stress singularities created by geometry of bonded structural assembly, and in a non-uniform state of stress when loaded. When testing adhesives at high strain rates additional variations are observed; particularly in strength. It is hypothesized that a non-uniform field of constitutive relations exists in an adhesive lap joint, owing to the strain rate sensitivity of the adhesive material. This study investigates the non-uniform distribution of strain rate in the overlap region of ASTM D3165 and D5656 single lap joint (SLJ) specimens, and how the strain rate sensitivity of the adhesive affects the stress distribution when the joint is subjected to varying tensile loading speeds. The numerical method of Finite Element Analysis (FEA) has been used to analyze the joint. Commercially available LS-DYNA implicit dynamics solver and one of its standard material formulations, *MAT_19_STRAIN_ RATE_DEPENDENT_PLASTICITY, were implemented to model incremental stiffness as a function of effective strain rate, within the adhesive lap joint. This thesis reports strain rates at various locations in the adhesive overlap for four test speeds, from 25.4 mm/s to 1270 mm/s. Results of stress distributions of the joint are presented comparing the relative effects of using strain rate insensitive and strain rate sensitive material models. Comparative results show that while the force vs. displacement curves show negligible change, strain rate levels and stresses at the bondline edge increase significantly with test speed. As this location is known to be site of failure initiation, these results indicate this may be an underlying mechanism controlling or at least affecting failure strengths of adhesive joints tested at high loading rates. Page | iv of 206 TABLE OF CONTENTS Chapter Page Introduction ............................................................................................................................ 1 1.1 Adhesively Bonded Single Lap Joint Testing ................................................................... 6 1.1.1 Synopsis of (available) Quasi-Static Testing................................................................ 7 1.1.2 Dynamic Single Lap Joint Testing and Analyses ........................................................ 10 1.1.3 Single Lap Joint Analysis Detail Considerations ........................................................ 34 1.2 Adhesive Material Characterization ............................................................................. 39 1.2.1 Polymeric Constitutive Modeling.............................................................................. 40 1.2.2 Failure Characterization ............................................................................................ 48 1.3 Summary ....................................................................................................................... 51 1.4 Research Objectives and Approach .............................................................................. 54 MATERIAL LEVEL ANALYSIS ................................................................................................... 56 2.1 Material Properties ....................................................................................................... 56 2.1.1 Adherend – 2024-T351 Aluminum – Material Properties ........................................ 56 2.1.2 Adhesive – PR-520 Epoxy – Material Properties ...................................................... 58 2.2 Material Formulations .................................................................................................. 64 2.2.1 Adherend – 2024-T351 Aluminum – Material Formulation ..................................... 65 2.2.2 Adhesive – PR-520 Epoxy – Material Formulations .................................................. 66 2.3 Adhesive Material Model Validation ............................................................................ 79 2.3.1 Modeling Issues ........................................................................................................ 79 2.3.2 Material Verification Results .................................................................................... 83 2.3.3 Final Observations Carried Over to Joint-Level Analyses ......................................... 91 JOINT-LEVEL ANALYSIS .......................................................................................................... 92 3.1 Single Lap Joint Specimens ........................................................................................... 92 Page | v of 206 TABLE OF CONTENTS (continued) Chapter Page 3.2 Finite Element Model .................................................................................................... 95 3.3 Analysis Summary ....................................................................................................... 101 3.4 Test Speed Selection ................................................................................................... 102 3.5 Failure Load Estimation .............................................................................................. 102 3.6 Dynamic Oscillations ................................................................................................... 105 3.7 Output Locations ......................................................................................................... 109 3.8 Filtering ....................................................................................................................... 114 NUMERICAL ANALYSIS RESULTS ......................................................................................... 116 4.1 Strain Rates ................................................................................................................. 117 4.2 D3165 Results ............................................................................................................. 127 4.2.1 Force vs. Displacement ........................................................................................... 127 4.2.2 Static Stress Distributions ....................................................................................... 134 4.2.3 Static Adhesive Simple Failure Criteria Check ........................................................ 138 4.2.4 Dynamic Stress Distributions .................................................................................. 139 4.2.5 Discrete Point Stress Components ......................................................................... 148 4.2.6 Pressure Dependence ............................................................................................. 150 4.3 D5656 Results ............................................................................................................. 152 4.3.1 Force vs. Displacement ........................................................................................... 153 4.3.2 Static Stress Distributions ....................................................................................... 156 4.3.3 Dynamic Stress Distributions .................................................................................. 159 4.3.4 Discrete Point Stress Components ......................................................................... 167 CONCLUSION ....................................................................................................................... 173 5.1 Strain Rates ................................................................................................................. 174 5.2 Stresses ....................................................................................................................... 177 Page | vi of 206 TABLE OF CONTENTS (continued) Chapter Page 5.3 Summary and Inferences ............................................................................................ 182 5.4 Recommendations for Future Analysis and Testing ................................................... 183 REFERENCES ............................................................................................................................... 185 APPENDIXES ............................................................................................................................... 195 A - LS-DYNA Keywords ........................................................................................................... 196 B - PR-520 Material Data ........................................................................................................ 202 C - FE Model Energy Balance Check ....................................................................................... 203 D - Element Results ................................................................................................................ 205 Page | vii of 206 LIST OF FIGURES Figure Page 1. Standard Single Lap Joint Specimens [8, 9, 73] ......................................................................................................... 3 2. Typical Primary Stress Plots of a Thin Adherend SLJ [33] .......................................................................................... 4 3. Adhesive Failure Modes [32] .................................................................................................................................... 9 4. Dynamic SLJ Force vs. Time for Two Joint Materials as reported by Harris and Adams [37] ................................. 13 5. SLJ Force vs. displacement for Increasing Test Speeds as reported by Jacob [20] ................................................. 14 6. Failure Strength Dependence of SLJ Strength as reported by Jacob [20] ................................................................ 15 7. Double Lap Joint (DLJ) specimens as reported by Essersi [19] ............................................................................... 16 8. DLJ Force vs. displacement for Increasing Speeds (Composite Adherends) reported by Essersi [19] .................... 17 9. DLJ Force vs. displacement for Increasing Speeds (Aluminum Adherends) reported by Essersi [19] .................... 18 10. Summary of Joint Strengths for Increasing Test Speeds reported by Essersi [19] ................................................ 18 11. Stress-Strain for Bulk Tensile (left) and TAST (right) for Increasing Speeds as reported by Zgoul [26] ................ 20 12. Bulk Tensile and TAST Converted (τ𝟑) Effective Knee (Yield Parameter) Stress vs. Strain Rate reported by Zgoul [26] ..................................................................................................................................................................... 20 13. Experimental vs FEA Correlation – SLJ Configurations reported by Zgoul [26] .................................................... 21 14. Comparison of Stress and Strain for Two SLJ Test Speeds as Zgoul [26] .............................................................. 22 15. Shear Strain Rate vs. Path Length for Two Test Speeds reported by Zgoul [26] (Note: it is believed there is a typo in (b) – rate should be 100 mm/min instead of 20) .................................................................................... 23 16. Peak Force vs. Test Speed [11] ............................................................................................................................. 24 17. Sensitivity of Parameters for Fully Plastic (left) and Unbalanced (right) Adherend Configurations [11] ............. 25 18. Adhesive Tensile Stress-Strain Dynamic Response for Varying Speeds as reported by Yang [10] ....................... 26 19. Single Lap Joint Force vs. Displacement – Test Speed: 6.67 m/s as reported by Yang [10] ................................. 28 20. Adhesive Lap Joint Specimens for SHPB Application reported by Srivastava [45] ............................................... 29 21. Adhesive Lap Joint Shear Strength vs. Test Speed as reported by Srivastava [45] ............................................... 30 22. Adhesive Lap Joint Shear Strength vs. Aspect Ratio as reported by Srivastava [45] ............................................ 30 23. SLJ Shear Stress vs. Temperature and Stresses vs. Overlap Length as reported by Chen and Li [24] .................. 31 24. SLJ SHPB Test Force vs. Displacement as reported by Haugouet [17] .................................................................. 32 25. 2024-T3 – Strain Rate Dependency to Yield Stress as reported by Lesuer [60] .................................................... 34 26. Adherend Fillet Parametric Study [28] ................................................................................................................. 35 27. Principal Stress vs. Overlap Distance – Adherend Fillet Study as reported by Silva [28] ...................................... 35 28. Adhesive Spew Parametric Study reported by Silva [28] ...................................................................................... 36 29. Effect of Spew Fillets – Joint Force vs. Displacement as reported by Doruet [31] ............................................... 37 30. Single Lap Joint Bondline Analysis – Principal Stress Vector Plots [30] ................................................................ 38 Page | viii of 206 LIST OF FIGURES (continued) Figure Page 31. Tensile Stress-Strain Curves of Two Polymers [12] & [1] ...................................................................................... 42 32. CT Force vs. displacements and KIC vs. Cross Head Speed [31] ........................................................................... 44 33. *MAT_89 von Mises Flow Rule and Yield Surface Equation [42] ......................................................................... 46 34. 2024-T351 Raw and Processed Tensile Stress-Strain Curves ................................................................................ 58 35. Shear and Tensile Specimens reported by Gilat [1] .............................................................................................. 60 36.“Raw Data” | Shear Stress – Shear Strain Digitized Curves [1] ............................................................................... 61 37.“Raw Data” | Tensile Stress – Tensile Strain Digitized Curves [1] .......................................................................... 61 38. PR-520 Effective Stress – Effective Strain from Tension and Shear ...................................................................... 64 39. Typical Polymeric Strain Rate Sensitivities............................................................................................................ 68 40. PR-520 True Effective Stress-Strain Curve – Yield Stress Determination ............................................................. 73 41. Plot of Reduced Input Data – *MAT_19 ............................................................................................................... 74 42. Strain Rate Sensitivities of PR-520 ........................................................................................................................ 76 43. Arbitrary Stress-Strain Input Curves – *MAT_89 .................................................................................................. 78 44. Bulk Specimen Meshes (tensile and shear) .......................................................................................................... 80 45. *MAT_89 Error Response – Explicit – 1st Output Time Step (not scaled) ............................................................. 81 46. “Resonance” Response of *MAT_19 with VP=0 in an Explicit Simulation ............................................................ 82 47. “Dummy” Input Curves - Material Verification Analyses ...................................................................................... 83 48. Bulk Specimen Material Verification – Tension .................................................................................................... 85 49. Bulk Specimen Material Verification – Shear ....................................................................................................... 85 50. Implicit Dynamics – Bulk Tensile – *MAT_89 – Gauge Section Elem Response ................................................... 86 51. Bulk Tensile Run 2 – Stress vs. Time and Strain Rate vs. Time – *MAT_89 .......................................................... 86 52. Single Element Results – Tensile – Material Verification Analyses ....................................................................... 88 53. Single Element Results – Shear – Material Verification Analyses ......................................................................... 88 54. Single Element Test – *MAT_89 Stresses and Strains vs. Time ............................................................................ 89 55. Final *MAT_19 PR-520 Material Input Curves – Single Element Test .................................................................. 90 56. Single Lap Joint Specimen Geometry .................................................................................................................... 95 57. Joint Boundary Conditions .................................................................................................................................... 96 58. Joint-Level Analysis Mesh (Only +X half is modeled) (D3165) .............................................................................. 97 59. Mesh Side View (D3165) ....................................................................................................................................... 98 60. Mesh Bondline Detail – 1 (D3165) ........................................................................................................................ 98 61. Mesh Bondline Detail – 2 (D3165) ........................................................................................................................ 99 Page | ix of 206 LIST OF FIGURES (continued) Figure Page 62. D5656 Mesh ........................................................................................................................................................ 100 63. Comparing EA9394 and PR-520 Shear Stress-Strain ........................................................................................... 103 64. D3165 Inertial Effects on Force vs. displacement ............................................................................................... 106 65. Dynamic Effects on Max and Average Shear Stress Values (D3165) .................................................................. 107 66. Dynamic Effects on Max and Average Peel Stress Values (D3165) ..................................................................... 108 67. Surface and Point Results Z-Direction Locations ................................................................................................ 109 68. Output Point Locations ....................................................................................................................................... 110 69. Z-Stress Across Bondline (X=0 to X= 12.7 mm, Y=6.30 mm, Z=0.025 mm) ......................................................... 111 70. Z-Stress Across Thickness (X=0.370 mm, Y= 6.30 mm, Z= -0.075 to Z= +0.075 mm) .......................................... 112 71. Candidate Shear Stress Elements – “Point 1” (X=0.370 mm, Y=0.053 mm) – All Stress Components .............. 113 72. Candidate Peel Stress Element – “Point 2” – All Stress Components ................................................................. 113 73. Filtering Example ................................................................................................................................................ 114 74. YZ-Strain Rates for Multiple Time Steps – Elastic/Dynamic – v = 762 mm/s ...................................................... 118 75. Shear Strain Rate Maximum and Minimum vs. Time – Elastic/Dynamic – v = 762 mm/s ................................. 119 76. Delta YZ-Strain Rate (SR/D minus E/D) – v = 762 mm/s – 5 kN .......................................................................... 120 77. Delta ZZ-Strain Rate (SR/D minus E/D) – v = 762 mm/s – 5 kN........................................................................... 120 78. Peel (Z-Strain) Strain Rate vs. Specimen Displacement – Point 2 ....................................................................... 121 79. Peel Strain Rate vs. Specimen Displacement – ................................................................................................... 122 80. Peel Strain Rates – Both Specimens – Point 2 – MAX prior to d = 0.05 mm ....................................................... 123 81. Shear Strain Rates – Both Specimens – Point 1 – MAX prior to d = 0.05 mm .................................................... 123 82. Peel Strain Rates – Both Specimens – Point 2 – MAX prior to d = 0.10 mm ....................................................... 124 83. Shear Strain Rates – Both Specimens – Point 1 – MAX prior to d = 0.10 mm .................................................... 125 84. Final Peel Strain Rates – Both Specimens – Absolute Average ........................................................................... 126 85. Final Shear Strain Rates – Both Specimens – Absolute Average......................................................................... 126 86. D3165 Joint Force vs. Displacement – All Cases – All Speeds ............................................................................. 128 87. D3165 Force vs. Displacement – v = 25.4 mm/s ................................................................................................. 129 88. D3165 Force vs. Displacement – v = 254 mm/s .................................................................................................. 129 89. D3165 Force vs. Displacement – v = 762 mm/s .................................................................................................. 130 90. D3165 Force vs. Displacement – v = 1270 mm/s ................................................................................................ 130 91. ΔF – Static vs. Dynamic Cases ............................................................................................................................. 133 92. ΔF – Elastic vs. SR Mat’l Cases............................................................................................................................. 133 Page | x of 206
Description: