ebook img

Numerical Analysis in Electromagnetics: The TLM Method PDF

176 Pages·2012·3.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Analysis in Electromagnetics: The TLM Method

Numerical Analysis in Electromagnetics Numerical Analysis in Electromagnetics The TLM Method Pierre Saguet First published 2012 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2012 The rights of Pierre Saguet to be identified as the author of this work have been asserted by /him in accordance with the Copyright, Designs and Patents Act 1988. ____________________________________________________________________________________ Library of Congress Cataloging-in-Publication Data Saguet, Pierre. Numerical analysis in electromagnetics : the TLM method / Pierre Saguet. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-391-3 1. Electromagnetism--Mathematical models. 2. Time-domain analysis. 3. Numerical analysis. 4. Electrical engineering--Mathematics. I. Title. TK454.4.E5S34 2012 537.01'515--dc23 2012008582 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-391-3 Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter1.BasisoftheTLMMethod:the2DTLM Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.Historicalintroduction. . . . . . . . . . . . . . . . . . . . . . . 1 1.2.2Dsimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1.Parallelnode . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2.Seriesnode . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3.Simulationofinhomogeneousmediawithlosses . . . 9 1.2.4.Scatteringmatrices . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5.Boundaryconditions . . . . . . . . . . . . . . . . . . . . . 14 1.2.6.Dielectricinterfacepassageconditions. . . . . . . . . . 15 1.2.7.Dispersionof2Dnodes. . . . . . . . . . . . . . . . . . . . 17 1.3.TheTLMprocess. . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1.Basicalgorithm. . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.2.Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3.Outputsignalprocessing. . . . . . . . . . . . . . . . . . . 24 Chapter2.3DNodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.Historicaldevelopment . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1.Distributednodes . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.2.Asymmetricalcondensednode(ACN) . . . . . . . . . . 30 2.1.3.Thesymmetricalcondensednode(SCN) . . . . . . . . 31 2.1.4.Othertypesofnodes . . . . . . . . . . . . . . . . . . . . . 33 vi NumericalAnalysisinElectromagnetics 2.2.Thegeneralizedcondensednode. . . . . . . . . . . . . . . . 37 2.2.1.Generaldescription. . . . . . . . . . . . . . . . . . . . . . 37 2.2.2.Derivationof3DTLMnodes . . . . . . . . . . . . . . . 41 2.2.3.Scatteringmatrices . . . . . . . . . . . . . . . . . . . . . . 46 2.3.Timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.Dispersionof3Dnodes. . . . . . . . . . . . . . . . . . . . . . 55 2.4.1.Theoreticalstudyinsimplecases . . . . . . . . . . . . . 56 2.4.2.Caseofinhomogeneousmedia. . . . . . . . . . . . . . . 60 2.5.Absorbingwalls . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5.1.Matchedimpedance . . . . . . . . . . . . . . . . . . . . . 61 2.5.2.Segmentationtechniques . . . . . . . . . . . . . . . . . . 62 2.5.3.Perfectlymatchedlayers . . . . . . . . . . . . . . . . . . 62 2.5.4.OptimizationofthePMLlayerprofile. . . . . . . . . . 65 2.5.5.Anisotropicanddispersivelayers. . . . . . . . . . . . . 67 2.5.6.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.6.Orthogonalcurvilinearmesh . . . . . . . . . . . . . . . . . . 70 2.6.1.3DTLMcurvilinearcell. . . . . . . . . . . . . . . . . . . 70 2.6.2.TheTLMalgorithm . . . . . . . . . . . . . . . . . . . . . 73 2.6.3.Scatteringmatricesforcurvilinearnodes . . . . . . . . 75 2.6.4.Stabilityconditionsandthetimestep . . . . . . . . . . 78 2.6.5.Validationofthealgorithm. . . . . . . . . . . . . . . . . 79 2.7.Non-Cartesiannodes . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter3.IntroductionofDiscreteElementsandThin WiresintheTLMMethod. . . . . . . . . . . . . . . . . . . . . . . . 85 3.1.Introductionofdiscreteelements. . . . . . . . . . . . . . . . 85 3.1.1.Historyof2DTLM. . . . . . . . . . . . . . . . . . . . . . 85 3.1.2.3DTLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.3.Applicationexample:modelingofap-ndiode. . . . . 100 3.2.Introductionofthinwires . . . . . . . . . . . . . . . . . . . . 105 3.2.1.Arbitrarilyorientedthinwiremodel . . . . . . . . . . . 106 3.2.2.Validationofthearbitrarilyorientedthin wiremodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Chapter4.TheTLMMethodinMatrixFormandtheZ Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 TableofContents vii 4.2.MatrixformofMaxwell’sequations. . . . . . . . . . . . . . 124 4.3.CubicmeshnormalizedMaxwell’sequations . . . . . . . . 125 4.4.Thepropagationprocess . . . . . . . . . . . . . . . . . . . . . 127 4.5.Wave-matterinteraction. . . . . . . . . . . . . . . . . . . . . . 130 4.6.ThenormalizedparallelepipedicmeshMaxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.7.Applicationexample:plasmamodeling. . . . . . . . . . . . 136 4.7.1.Theoreticalmodel . . . . . . . . . . . . . . . . . . . . . . . 136 4.7.2.ValidationoftheTLMsimulation. . . . . . . . . . . . . 139 4.8.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 APPENDICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 AppendixA.DevelopmentofMaxwell’sEquationsusing theZTransformwithaVariableMesh . . . . . . . . . . . . . . . 147 AppendixB.TreatmentofPlasmausingtheZTransform fortheTLMMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Introduction There are a number of modeling methods that are suitable for solving problems in electromagnetism and analyzing the behavior of certain media. In order to apply these methods the type of problem must be specified and the boundary conditions must be clearly determined and defined. Numerical or analytical solutions are then carriedout. Analytical solutions, which are already well established, were the firsttobeapplied.Theyenabledanefficientresolutionofallproblems relating to the majority of electromagnetic wave guiding systems. However, these analytical methods remain limited, since, in these cases, it is only possible to analyze structures with simple geometries and which, in the majority of cases, have a certain degree of symmetry. For more realistic modeling of geometries and more complex materials (indeed, complexity leaves little room for any analytical resolution), we have numerical methods, which have become an important element in the analysis of the behavior of various industrial products.Theyhaveprogressedinparallelwithtechnologyandenable electronic systems developers to have at their disposal all of the necessary characteristics and data, which were difficult to obtain through testing, in order to ensure the reliability of device operation withoutanyaccompanyingperformancedegradation. x NumericalAnalysisinElectromagnetics Inthespecificcaseofelectromagnetism,therearevariousdiffering numerical techniques, whose effectiveness depends on the problem and on the desired results. These techniques can be classified accordingtodifferentcriteria. Classificationbasedonthetypeofequation Firstly, we can classify numerical methods based on equation type. Indeed, most models under consideration lead to differential or integral mathematical equations. If the problem deals with electromagnetic wave propagation, the equations which describe its behavior (such as Maxwell’s and wave equations) can be expressed usingtwomethods:differentialorintegral. In order to solve these equations at any point in a finite space, differential or integral methods are used to determine the values required. Classificationbasedontheapplicationdomain A second classification which may be taken into account is the domainwithinwhichtheequationstobesolvedaredefined.Intheory, equations express the space and time variations in the scale of the problem to be resolved (electromagnetic fields or potentials). Here we are working in the time domain and the methods used are known as “time-domainnumericalmethods”. However, in the study of certain problems (notably in the area of telecommunications), it is field cartography varying sinusoidally over time or from a combination of multiple sinusoids, which is of interest. In these cases, the electromagnetic characteristics of the majority of materials can be expressed in a much simpler form, based on the frequency of these sinusoidal signals. These equations are therefore expressed frequentially and so the methods used to solve them are knownas“frequency-domainnumericalmethods”. The advantage of frequency methods is that they give rise to equations which are more flexible and easier to simplify. Introduction xi Nevertheless, they are also limited, as they rely on signals always beingsinusoidalorbasedonasinusoidalcombination. In all cases a frequency representation can be obtained from a signalbyusingaFouriertransformofthetimesignal. In this book, we are going to look at the TLM (transmission line matrix) method, which is one of the “time-domain numerical methods”. These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general. We will focus our attention on the TLM method which, since the pioneering article on TLM by P.B. Johns and R.L.Beurle in 1971, has been intensively studied and developed by many researchers. It has, therefore, acquired a reputation for being a powerfulandeffectivetoolbynumerousteamsandstillbenefitstoday from significant theoretical developments. In particular, in recent years, its ability to simulate various situations, including complex materials,withexcellentprecisionhasbeendemonstrated. Thisbookconsistsofanintroductionandfourchapters. Chapter 1 describes the basis of the TLM method in two dimensions and enables different aspects of the method to be tackled, aswellastheerrorsresultingfromspaceandtimesampling. Chapter 2 is dedicated to a 3D analysis of the method. It maps out themaintypesofnodescurrentlyusedbypointingouttheirrespective advantages and disadvantages. This chapter also features the problem of open structure simulation and the necessity of implementing absorbing boundaries, including PMLs, which nowadays are used universally. Chapter 3 describes techniques which enable the simulation of structures comprising passive and active discrete elements, as well as thin metallic wires without the need to mesh these structures, which would lead to memory problems. These techniques, as well as 3D node and mesh flexibility, enable the simulation of a wide range of problems where the properties of the surrounding medium are not dependentonfrequencyandarethereforenotdispersive. xii NumericalAnalysisinElectromagnetics Chapter4demonstrateshowtosimulatedispersivemediausingthe ZtransformwithintheTLMmethodinmatrixform.Thisrigorousand unconditionally stable method makes the use of the TLM method possibleinvirtuallyallcases. Application examples are included in the last two chapters, enabling us to draw conclusions regarding the performance of the implementedtechniquesand,atthesametime,tovalidatethem. Multi-scale problems which require the TLM method to be combined with other methods will not be dealt with in this book in spite of their undeniable interest. There are many papers dedicated to thiswhichwouldrequirecollationintoasinglepublication.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.