AMS / MAA CLASSROOM RESOURCE MATERIALS VOL 55 Nuggets of Number Theory A Visual Approach Roger B. Nelsen Nuggets of Number Theory A Visual Approach AMS / MAA CLASSROOM RESOURCE MATERIALS VOL 55 Nuggets of Number Theory A Visual Approach Roger B. Nelsen Providence, Rhode Island Classroom Resource Materials Editorial Board Susan G. Staples, Editor Bret J. Benesh Paul R. Klingsberg Christina Eubanks-Turner Tamara J. Lakins Christoper Hallstrom Brian Lins Cynthia J. Huffman Mary Eugenia Morley Brian Paul Katz Darryl Yong Haseeb A. Kazi 2010 Mathematics Subject Classification. Primary 11-01; Secondary 11A07, 11B39, 11D04. For additional information and updates on this book, visit www.ams.org/bookpages/clrm-55 Library of Congress Cataloging-in-Publication Data Names: Nelsen,RogerB.,author. Title: Nuggetsofnumbertheory: avisualapproach/RogerB.Nelsen. Description: Providence,RhodeIsland: MAAPress,animprintoftheAmericanMathematical Society, [2018] | Series: Classroom resource materials ; volume 55 | Includes bibliographical referencesandindex. Identifiers: LCCN2018000043|ISBN9781470443986(alk. paper) Subjects: LCSH: Number theory–Study and teaching. | Mathematics–Study and teaching. | AMS: Number theory – Instructional exposition (textbooks, tutorial papers, etc.). msc | Numbertheory–Elementarynumbertheory–Congruences;primitiveroots;residuesystems. msc | Number theory – Sequences and sets – Fibonacci and Lucas numbers and polynomials andgeneralizations. msc|Numbertheory–Diophantineequations–Linearequations. msc Classification: LCCQA241.N4352018|DDC512.7–dc23 LCrecordavailableathttps://lccn.loc.gov/2018000043 Copying and reprinting. Individualreadersofthispublication,andnonprofitlibrariesacting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. (cid:13)c 2018bytheAmericanMathematicalSociety. Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. (cid:13)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 232221201918 Contents Preface ix Chapter1. FigurateNumbers 1 1.1. Polygonalnumbers 1 1.2. Triangularnumberidentities 7 1.3. Oblongnumbersandthein(cid:976)initudeofprimes 13 1.4. Pentagonalandother(cid:976)iguratenumbers 14 1.5. Politenumbers 16 1.6. Three-dimensional(cid:976)iguratenumbers 18 1.7. Exercises 21 Chapter2. Congruence 25 2.1. Congruenceresultsfortriangularnumbers 25 2.2. Congruenceresultsforother(cid:976)iguratenumbers 27 2.3. Fermat’slittletheorem 30 2.4. Wilson’stheorem 32 2.5. Exercises 33 Chapter3. DiophantineEquations 35 3.1. Trianglesandsquares 36 3.2. LinearDiophantineequations 38 3.3. LinearcongruencesandtheChineseremaindertheorem 41 3.4. ThePellequation𝑥(cid:2870) −2𝑦(cid:2870) = 1 44 3.5. ThePellequation𝑥(cid:2870) −3𝑦(cid:2870) = 1 46 3.6. ThePellequations𝑥(cid:2870) −𝑑𝑦(cid:2870) = 1 49 3.7. Exercises 52 Chapter4. PythagoreanTriples 55 4.1. Euclid’sformula 56 4.2. Pythagoreantriplesandmeansofoddsquares 57 4.3. Thecarpetstheorem 58 4.4. Pythagoreantriplesandthefactorsofevensquares 59 4.5. AlmostisoscelesprimitivePythagoreantriples 61 4.6. APythagoreantripletree 64 4.7. PrimitivePythagoreantripleswithsquaresides 67 v vi CONTENTS 4.8. Pythagoreanprimesandtriangularnumbers 67 4.9. Divisibilityproperties 69 4.10. Pythagoreantriangles 70 4.11. Pythagoreanruns 73 4.12. Sumsoftwosquares 73 4.13. PythagoreanquadruplesandPythagoreanboxes 76 4.14. Exercises 79 Chapter5. IrrationalNumbers 83 5.1. Theirrationalityof√2 83 5.2. Rationalapproximationsto√2: Pellequations 88 5.3. Rationalapproximationsto√2: AlmostisoscelesPPTs 89 5.4. Theirrationalityof√3and√5 90 5.5. Theirrationalityof√𝑑 fornon-square𝑑 93 5.6. Thegoldenratioandthegoldenrectangle 94 5.7. Thegoldenratioandtheregularpentagon 96 5.8. Periodiccontinuedfractions 98 5.9. Exercises 101 Chapter6. FibonacciandLucasNumbers 103 6.1. TheFibonaccisequenceinartandnature 104 6.2. Fibonacciparallelograms,triangles,andtrapezoids 106 6.3. Fibonaccirectanglesandsquares 107 6.4. DiagonalsumsinPascal’striangle 113 6.5. Lucasnumbers 115 6.6. ThePellequations𝑥(cid:2870) −5𝑦(cid:2870) = ±4andBinet’sformula 117 6.7. Exercises 121 Chapter7. PerfectNumbers 123 7.1. Euclid’sformula 123 7.2. Evenperfectnumbersandgeometricprogressions 125 7.3. Evenperfectnumbersandtriangularnumbers 126 7.4. Evenperfectnumbersmodulo9 128 7.5. Evenperfectnumbersendin6or28 128 7.6. Evenperfectnumbersmodulo7 130 7.7. Evenperfectnumbersandsumsofoddcubes 131 7.8. Oddperfectnumbers 131 7.9. Exercises 133 SolutionstotheExercises 135 Chapter1 135 Chapter2 137 Chapter3 138 CONTENTS vii Chapter4 141 Chapter5 142 Chapter6 144 Chapter7 145 Bibliography 149 Index 151 Preface Thetheoryofnumbersisthelastgreatuncivilizedcontinentof mathematics. Itissplitupintoinnumerablecountries,fertile enoughinthemselves,butallthemoreorlessindifferenttoone another’swelfareandwithoutavestigeofacentral,intelligent government. IfanyyoungAlexanderisweepingforanewworldto conquer,itliesbeforehim. EricTempleBell Theelementarytheoryofnumbersshouldbeoneoftheverybest subjectsforearlymathematicalinstruction. Itdemandsverylittle previousknowledge;itssubjectmatteristangibleandfamiliar;the processesofreasoningwhichitemploysaresimple,general,and few;anditisuniqueamongthemathematicalsciencesinitsappeal tonaturalhumancuriosity. Amonth’sintelligentinstructioninthe theoryofnumbersoughttobetwiceasinstructive,twiceasuseful, andatleasttentimesasentertainingasthesameamountof “calculusforengineers.” GodfreyHaroldHardy Numbertheoristsarelikelotus-eaters—havingoncetastedofthis foodtheycannevergiveitup. LeopoldKronecker SometimeagoIwaslookingatseveraltextbooksfortheundergrad- uatenumbertheorycourse. Iwasstruckbyhowfewillustrationswere includedinmanyofthosetextbooks. Anumber—speci(cid:976)icallyapositive integer—canrepresentmanythings: thecardinalityofaset;thelength of a line segment; or the area of a plane region. Such representations naturallyleadtoavarietyofvisualargumentsfortopicsinelementary number theory. Since the number theory course usually begins with propertiesofthepositiveintegers,thetextsshouldhavemorepictures. Thatobservationbecamethemotivationforthisbook. Work on this book began when I was invited to give a talk at the MAA’s MathFest in Albuquerque in August 2005, in a session entitled “Gems of Number Theory” organized by Arthur Benjamin and Ezra ix
Description: