ebook img

Nucleosynthesis constraints on the faint vector portal PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nucleosynthesis constraints on the faint vector portal

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher c Ownedbytheauthors,publishedbyEDPSciences,2015 (cid:13) Nucleosynthesis constraints on the faint vector portal AnthonyFradette1,MaximPospelov1,2,JosefPradler3,a,andAdamRitz1 1DepartmentofPhysicsandAstronomy,UniversityofVictoria,Victoria,BCV8P5C2,Canada 2PerimeterInstituteforTheoreticalPhysics,Waterloo,ONN2J2W9,Canada 3InstituteofHighEnergyPhysics,AustrianAcademyofSciences,A-1050Vienna,Austria 5 1 0 Abstract. New Abelian U(1) gauge bosons V can couple to the Standard Model through mixing of the ′ µ 2 associated field strength tensor V with the one from hypercharge, FY . Here we consider early Universe µν µν n sensitivitytothisvectorportalandshowthattheeffectivemixingparameterwiththephoton,κ,isbeingprobed a forvectormassesintheGeVballparkdowntovalues10 10 .κ.10 14wherenoterrestrialprobesexist. The − − J ensuingconstraintsarebasedonadetailedcalculationofthevectorrelicabundanceandanin-depthanalysisof 2 relevantnucleosynthesisprocesses. ] h p 1 Introduction the following we will concentrate on a Stückelberg ori- - p gin of m that allows to maintain gauge invariance in V e The origins of our Universe may well be rooted in infla- U(1) withoutcomplicatingthephenomenologybyhidden ′ h tion or alternative cataclysmic scenarios that regard the Higgsparticlesh;seee.g.[4]forthephenomenologyand [ ′ veryearliestmomentsofexistence. However,despitethe [5]forcosmologicalconstraintsonthelatterscenario. 1 impressive success of observational cosmology over the The SM decay modes of V are well known. When v past decades, the earliest true direct window into the be- hadronicdecaysarekinematicallyaccessible,onecanuse 9 ginningsremainobservationsoflightelementabundances. experimentaldataontheR-ratiotoinfercouplingstopho- 5 Theyconcerntheepochofprimoridalnucleartransforma- 4 tonsinthetime-likedirection,andhencetodeterminethe tions at cosmic times t & 1s. The overall concordance 0 decayrateΓ andallbranchingratios.Belowthedi-muon V 0 of the Big Bang nucleosynthesis (BBN) predictionswith threshold and for m > 1MeV the vector V decays to V . theobservationallyinferredprimordialvaluesisoneofthe 1 electron-positron pairs only, thereby setting its principal 0 mostimpressivesuccessesofmoderndaycosmologyand lifetime, 5 particle physics. Today, BBN is used as a toolboxto put 1 models of new physics to a stringent test [1], whenever 3 1GeV 10 12 2 v: they predictsome interferencewith the the standardpro- τV ≃ κ2αm =270s× m κ− ! , (2) i cessesintheobservablesectoratt&1s. V V X Undertheassumptionofacanonicalsequenceofcos- whereαiselectromagneticfinestructureconstant. Inthe r mologicalevents,theUniverseemergedfrominflationand a followingthecosmologicalconsequencesofU(1) vectors ′ baryogenesismuchpriortoBBN.Suchsequencethenal- with masses in the MeV-GeV range, and lifetimes long lowsonetoputstringentconstraintsonveryweaklyinter- enoughforthedecayproductstodirectlyinfluenceprimor- actingsectorsofnewphysicsbeyondtheStandardModel dial nucleosynthesis are explored. These vectors have a (SM). The kinetic mixing of a new U(1) vector V with ′ µ parametricallysmallcouplingto theelectromagneticcur- hypercharge FY Vµν is of particular interest as the mix- µν rent,andthusanextremelysmallproductioncrosssection ingwiththephotonleadstonumerousexperimentalcon- for e+e Vγ, σ κ2πα2/s 10 54cm2 wherewe − prod − sequences and much attention was devoted to this vector → ∼ ∼ took √s = 200 MeV and κ = 10 12 from above. Such − portalinrecentyears[2].Belowtheelectroweakscale,the smallcouplingsrenderthesevectorstatescompletelyun- couplingofV totheSMisessentiallygivenbyitsmixing detectableinterrestrialparticlephysicsexperiments. withthephoton[3], Despitethetinyproductioncrosssection,anycharged κ SM state that is populated in appreciable number in the = F Vµν =eκV Jµ . (1) LV −2 µν µ em early Universe at temperature T mV may yet emit V. ∼ With the above ballpark numbers in (2), parametric es- With κandm beingtheonlyfreeparameters,themodel V timates suggest that an amount of MeV/baryon may be provides a simple, and technically natural prototype sce- storedinV-particles.FollowedbylatedecaysbacktoSM narioforalight,weaklyinteractingnewparticlesector.In states, visible energy is therefore being injected into the ae-mail:[email protected] primordialplasma atlevelsthatare probedbyBBN. The EPJWebofConferences abundancecanbeperformedexplicitly, ¯ l κ Y(e) = 9 m3VΓV→ee¯. (5) V 4π(Hs) Aµ Vµ T=mV While further leptonic production channels are easy l time to be included into (5), hadronicproductionchannelsre- quire assumptions about the primordial hadron gas and Figure1. Darkphotoninversedecaysaretheleadingcontribu- the strength of interaction with photons, denoted by α . eff tion to sub-Hubble production rates inthe calculation of the V At temperatures above the QCD confinement scale T c ∼ relicdensity. 200MeVlightquarksaredeconfinedandindividualquark contributionscanbeaddedtoY inastraightforwardman- V ner. BelowT onemayuseafreegasofmesonsasanap- c proximation to the hadronic (non-baryonic)particle con- early Universe is therefore likely to be the only “labora- tent in the early Universe. The production via inverse tsomryal”lewrhaererebseuincghpvreorbyedda.rkHeprheowtoensrewpiotrhtoκn∼th1e0d−e1t2aialnedd tchheanrgbeedinpciolundeadnduskinaognadseccaalayrsQ{πE+Dπ−m,oKd+eKlw−}ith→effVectciavne analysisperformedin[7]wherealsoCMBlimitsoneven couplingstrengthslikeαπeffπ(mV)=κ2αππ(√s=mV)where laterdecayswereconsidered.Previouspartialdiscussions αππ is extracted from BaBar cross section measurements ofcosmologicalsignaturesofdecayingdarkphotonsmay ofe+e− γ∗ π+π−(γ)[11],andsimilarlyforcharged → → alsobefoundin[5,6]. kaons[12]. Inthefollowingweassumenootherlightstatesχthat Finally,thereisapossibilityofresonantproductionof are charged under U(1). Therefore, there are no decays V by virtue of the thermalbath. Such in-mediumeffects ′ V χχ¯ thatpotentiallydrainvisible modesandthereby maybecastintoaneffectivemixingangle, → ameliorate the derived limits from BBN. Using some re- κ κ = , (6) centinsightaboutthein-mediumproductionofdarkvec- T,L 1 Π /m2 tors[8,9](seealso[10])wefirstdiscusstheproductionof | − T,L V| darkvectorsinthenextsectionandexploreconstraintson with Π being the transverse (T) and longitudinal (L) T,L V-decaysintoSMinSec.3beforeconcludingwithSec.4. photonpolarizationfunctionsin the primordial, isotropic plasma.TheexpressionsforΠ cane.g.befoundin[13]; T,L the longitudinal polarization function [8] used here is, 2 Abundance prior to decay Πhere = m2/(ω2 m2)ΠRef.[13] and ω is the (dark) pho- L V − V L tonenergy.Equation(6)informsusabouttheconditionof Therelicabundanceofweaklycoupleddarkphotonsprior resonantdarkphotonproduction, totheirdecayisobtainedthroughacalculationoftheleak- age from the observable sector to the hidden sector with ReΠ (ω,T )=m2. (7) T,L r,T,L V sub-Hubblerates, Γ /H 1. This“freeze-in”process prod ≪ is dominatedby inversedecaysof V, throughthe coales- TheconditiondependsontemperatureT asΠ arepro- T,L cence of e , µ ..., and, similarly, throughhadroniccon- portional to the plasma frequency, ω (T). Most impor- ± ± P tributions;seetheillustrationinFig.1. tantly,theresonancetemperatureT (ω)asafunctionof r,T,L The Boltzmannequationfor the totalnumberdensity frequencyωisparametricallylargerthanm withamini- V ofV takestheform mumfrequencyatwhichtheresonancecanhappen, n˙ +3Hn =C. (3) 3 1/2 V V T =m 8m . (8) r,min V"2πα# ≃ V The righthandside is the collision integraland provided thatVneverreachesthermalequilibrium,itgivesthenum- Thus resonances occur at parametrically larger tempera- ber ofV states emittedperunitvolumeandunittime. In tures (by α−1/2) than mV, for which H(T) is significantly theMaxwell-BoltzmannapproximationfortheSMdistri- largerthanatT mV atwhichtheV freeze-inproduction ≃ butionfunctions,andin thelimitthatonlyelectronscoa- has its biggest contribution. Therefore, resonant contri- lesce, the integrationcan be done analytically [5, 7] (see butions to YV do not alter the picture drastically though also[6]) numericallytheymayconstituteasmuchas30%. Afterproduction,themomentumofV redhiftsquickly 3 sothatatthetimeofdecaytheenergyofV istogoodap- C Γ m2TK (m /T). (4) ≃ 2π2 V→ee¯ V 1 V proximationgivenbytherestmass, EV = mV. Thedecay deposits this energy into leptons, hadrons, and hadronic Here, Γ = κ2αm /3 is the decay width of V to elec- V ee¯ V resonances. The energy prior to decay that is stored per trons, up→to corrections(m /m )2 and K is the modified e V 1 baryonisthereforegivenby Besselfunctionofthesecondkind.Intermsofthenumber s of V particlesnormalizedto entropydensity, YV = nV/s, Ep.b. =mVYV 0 , (9) the cosmic time integral in (3) for the final “freeze-in” nb,0 DarkMatter,HadronPhysicsandFusionPhysics where n /s = 0.9 10 10 is the baryon-to-entropyra- 101 .. b,0 0 × − p(p¯) tio today. Equipped with Ep.b. as a function of mV and n(n¯) V →hadr. κ followingthe detailed calculationsof the V “freeze in” π+(π−) abundance in [7], we may now explore its consequences K+(K−) ) forBBN. ay KL c e d c 1 3 V-decaysduring BBN ni ro hEemi/mV d a Primordial nucleosynthesis predictions are affected for h ( darkphotondecayswithcosmiclifetimet & 1sorlarger. s/ e Ensuingconstraintsarethengovernedbyacombinationof ticl r lifetime and abundance, both being complementary with pa 10−1 respect to the vector mass: τ (Y ) decreases(increases) V V withlargerm . Fromthisoneexpectsconstraintsaslocal- V ized islands in those parameters where the epoch of pri- mordialnucleosynthesisexhibitsitsgreatestsensitivity. 10 mV (GeV) 3.1 Majoreffectsandtreatment Figure2. Pythiasimulationontheaveragenumberofparticles TheeffectsonBBNareunderstoodbyconsideringelectro- perV decayandontheinjectedelectromagneticenergyafterall magnetic and hadronicenergy injection separately. Prior particles havedecayed or annihilated toelectrons and photons. to decay, the V abundancerelativeto baryonsis substan- Aboutonethirdoftheenergyiscarriedawaybyneutrinos. Nar- tial, nV/nb . 108 for τV < 1s, and the decays of V in- rowhadronicresonancesareneglected. jectelectrons,muons,andmesonsinnumberslargerthan baryons. Darkphotondecayswith m 2m = 279MeVre- V π ≤ ± sultexclusivelyininjectionofelectromagneticenergy,be- frommuondecayconstituteonlyminorcorrectionstothe causeV e+e ,µ+µ aretheonlykinematicallyaccessi- − − → photon-inducedprocesseslistedabove[5]. blemodes. Muonstypicallydecaybeforeinteracting,and For vector masses abovethe di-pion threshold, m > electron-positronpairsarequicklythermalizedbyinterac- V 2m ,hadronicmodesareaccessibleinthedecayofVand tionswithbackgroundphotons.Theresultingelectromag- π± theeffectsonBBNaremoreintricate. Inthehadronicde- neticcascadewithspectrum f (E )entailsalargenumber γ γ cay ofV onlyπ , K , and K , with lifetimesτ 10 8s, ofnon-thermalphotonsthatmaythenspalllightelements. ± ± L ∼ − and(anti-)nucleonshaveachancetoundergoastrongin- Importantly,thespectrumhasarelativelysharpcut-off teractionreactionbeforedecayingbythemselves. for energiesabove the e pair-creationthreshold, E ± pair m2/(22T). Photons with E > E are being dissipate≃d Before deuterium formation at T 100keV, only e γ pair chargeexchangereactionsonnucleons,≃suchasπ + p before they interact with nuclei, and to good approxima- − → π0+n,arepossible.Theychangethen/pratioandthereby tion f (E ) = 0for E > E . Photonswith E < E , γ γ γ pair γ pair mostprominentlytheprimordial4Hevalue.Afterthedeu- however, undergoslower degradationprocesses and may terium bottleneck—once light elements have formed— interactwiththelightelementsbeforebeingthermalized. charge exchange creates “extra neutrons” on top of the EquatingE againstthephoto-destructionthresholds(in pair residual and declining neutron abundance. In addition, brackets below) yields the temperature and thereby the absorption with subsequent destruction of light elements cosmictimet ofbiggestimpactforaspallationchannel: ph suchasπ +4He T +nisnowoperative.Spallationof − → 2 104s, 7Be+γ 3He+4He (1.59MeV), 4Hemayalsohaveasecondaryconsequence: theproduc- × → tph  5 104s, D+γ n+p (2.22MeV), tion of mass-3 elements with non-thermalkinetic energy ≃ 4××106s, 4He+→γ→3He/T+n/p (20MeV), may induce reactions of the sort T + 4Hebg → 6Li+ n. The spallation rate of species N with numberdensity In the numericalanalysis, these processesaswell as sec- ondarypopulationsofπ fromkaondecays,andhyperon ± n isgivenby N producing channels from reactions of kaons on nucleons Emax and nuclei are being accounted for. Furthermore, in our Γph(T)=2nN dEγ fγ(Eγ)σγ+N X(Eγ), (10) analysis, we restrict ourselves to reactions at threshold, ZEthr → withchargedpionsandkaonsbeingthermalizedbeforere- whereσ (E )isthephoto-dissociationcrosssection actingonlightelements;suchapproximationgenerallyre- γ+N X γ for γ + N → X with threshold E . The factor of two sultsinmoreconservativeconstraints.Adetailedquantita- thr → accountsfor the two independentcascadesthatformin a tivediscussionofincompletestoppingcanbefoundin[5]. back-to-back decay of V at rest, each with a maximum Finally, baryonpairsare producedin the V-decayfor energyof E = max E ,E /2 . All spallation reac- m & 2GeV. Final state nucleons n¯ and p¯ will prefer- max pair inj V tions listed in [14] arentaken into aoccount in the numer- entially annihilate on protons with an annihilation cross ical analysis. We note in passing that neutrino injection section σ v m 2. Theinjectionofnn¯ thenresultsin h ann i ∼ −π± EPJWebofConferences agreement with [17] when using a baryon asymmetry of 1 e± π± K± ηb =6.2 10−10andaneutronlifetimeofτn =885.7s. Brem × ng 3.2 Lightelementobservations hi c bran 10−1 µ± BofBlNighsetnesleitmiveitnytiasbautntadiannecdebsyanthdetohbeisreervsatitmioantaeldinefrerorrrebnacre. e tiv Here we briefly discuss those observations that form the c p(p¯) e basisofourobtainedregionsofinterest. ff e d Themostabundantelementafterhydrogenishelium. e pt 10−2 n(n¯) ItsmassfractionYp isinferredfromextragalacticHIIre- o d gions,andvaluesintherange a 0.24 Y 0.26 (11) p ≤ ≤ 10−3 havebeenreportedovertheyears.Owingtopotentialsys- 0.1 1 tematicuncertainties[18,19]weadopt(11)asthecosmo- mV (GeV) logicallyviablerange. Amongrecentdevelopments,theprecisiondetermina- Figure3. Finalstatebranchingratiosoflong-livedmesonsand tionofD/Hfromhighredshiftquasarabsorptionsystems otherrelevantdecayproducts.BaBarmeasurementsofthee ± → standsout[20,21]. Errorbarshavereducedbyafactorof π ande K crosssectionsuptom = 1.8GeVarestiched ± ± → ± V fiveincomparisontopreviouslyavailabledeterminations. together with a Pythia simulation starting at m 2.5GeV; V ≥ Theweightedmeannowreads[21], a branching to K was neglected and the fraction of m that L V is ultimately being converted to electromagnetic energy is la- D/H=(2.53 0.04) 10 5. (12) beledBr . − em ± × D astration on dustgrainsis, however,a potentialsource of systematic uncertainty,andvaluesas high as 4 10 5 − × havealsobeenreported[22,23]. Inlightofthis,weadopt onenetp nconversionwithassociatedenergyinjection → anupperlimitof, of m +m . Annihilation on neutronswith similar cross p n sectionisalsopossibleand pp¯ injectionresultsinonenet D/H<3 10 5. (13) − n p conversion. Assuming equal cross sections, the × → relativeefficiencyis p/(n+p)andn/(n+p),respectively. as well. Finally, producingtoo little D/H yields a robust At threshold, the rate for neutroninjection can be in- limitbecausenoknownastrophysicalsourcesofthisfrag- ferred from a measurementof the e+e nn¯ cross sec- ilelightelementexist.Wethereforeeitherusethenominal − tion, σ 1nb [15]. Given a tota→l hadronic cross lower2σ-limitfrom(12)orrequire(robustly), e+e nn¯ −→ ∼ section σ 50nb at this energy, the branching e+e−→had ∼ 3He/D<1 (14) fractiontoaneutron-antineutronpairis 2%. Awayfrom ∼ the di-nucleon threshold, with multi-pion(kaon) produc- instead. Thelattervalueisderivedformsolarsystemob- tion anddecaysto hyperonsandbaryonicresonancesbe- servations[24]. ing prevalent, V-decays may be simulated using Pythia. Finally, and with much smaller abundance, the pri- The ultimate yield of π ,K , K , and nucleons prior to ± ± L mordial value of 7Li/H [25], is lower than the lithium their decay is shown in Fig. 2; dots depict the average yield from standard BBN by a factor of 3-5, 7Li/H = electromagnetic energy that is injected after all particles (5.24+0.71) 10 10[17].Weconsiderlithiumbeingincon- have decayedto electronsandphotons; e+ have been an- 0.67 × − corda−ncewithobservationsifBBNpredictionsyield nihilated on e . The rest of the decay-energy is carried − away by neutrinos. At lower energies, decay events are 10 10 <7Li/H<2.5 10 10. (15) − − eventuallydominatedbytwobodydecays. Abovethedi- × pion(di-kaon)threshold,we use BaBar measurementsof Whilenewphysicsmaybeattheheartofthelithiumprob- thee± π± ande± K± crosssectionuntilanreported lem, we caution thatastrophysicaldepletionmechanisms → → energyof √s=mV =1.8GeV. Relevantultimatebranch- may also play their part in solution to this long-standing ing ratios are shown in Fig. 3; the effects of KL are, for puzzle;see[26]forarecentreview. simplicity,neglectedinourBBNanaslysis. A moredetaileddiscussionalongwitha listofallin- 3.3 Results cludedreactionscanbefoundintheoriginalpaper[7]as wellasintheprecedingwork[5]. Numericalresultswere Our results from V-decays and their effect on BBN are obtained by usage of a Boltzmann code that is based on presentedinthem ,κparameterspaceinFig.4. Contours V Ref. [16], with significant improvements and updates as ofconstantlifetime,τ andfreeze-inabundancen /n are V V b detailed in [5]. Standard BBN yields are found to be in shownbythediagonalsolidanddottedlines,respectively. DarkMatter,HadronPhysicsandFusionPhysics 1100−−1100 4He followedby7Li+p→4He+4He.WithareducedCoulomb 2 II 3He/D barrier, 7Li is more susceptible to proton burning in the 1100−−1111 6 7LDi//HH secondstepandthedeclining7Litrendisdepictedbythe 6Li/H dashed lines in Fig. 4. Most of the extra neutrons, how- logτV ever,endupbeingcapturedbyprotonsandtheassociated 1100−−1122 5 Ia logYV D/Hconstraint(13)isgivenbytheorangeregion. III 3 κκ 1100−−1133 Ib 4 Conclusions 8 The kinetic mixing of a new U(1) gaugegroup with the Ic ′ 1100−−1144 0 Standard Model U(1) factors of hyperchargeand, below the electroweak scale, of electromagnetism is one of the fewportalstothehiddensectorwithrenormalizablecou- 1100−−1155 plings. The associated gauge boson V is often called a 11 110011 110022 110033 110044 mmVV((MMeeVV)) “darkphoton”andinthismanuscriptwehavereportedthe cosmologicallimitsfromBBN astheyhavebeenderived Figure4. Vector mass mV and kineticmixing parameter κ pa- in[7]. BBNsensitivityreachesphotonkineticmixingpa- rameter space with BBN sensitivity. Diagonal gray contours rametersofκ 10 14for1MeV m .10GeV,unchal- − V depict τ (solid) or n /n prior to decay (dotted). Shaded re- ∼ ≤ V V b lengedfromterrestrialdarkphotonsearches,see, e.g.the gionsareexcludedbyobservationsaslabeled.Thesolid(orange) worksandpresentations[27–33] closedlineisa2σconstraintfromunderproduction ofD/Hde- The presented limits are based on a thermal abun- rived from (12). Dashed black linesshow decreasing levels of dance of V and a standard cosmological history of 7Li/H, 4 10 10 and 3 10 10, fromouter cirlcestotheinner − − ones,resp×ectively. Along×thedottedline6Li/H=10 12signify- the Universe—i.e.uneventfuluntilV-decay—withreheat − ingantwoordersmagnitudeenhanced6Liyield,thatis,however, temperaturesinexcessofmV. Additionalcontributionsto notyetconstrainedbyobservations. theV-abundancesuchasfromaninitialV-condensateaf- terinflationmayonlystrengthenthederivedbounds. The latter source of primordial V-particles is particularly in- teresting in the context of smaller V-masses. Below the di-electronthreshold(notconsideredinthiswork),V has TheregionslabeledI-IIIareinconflictwithobservations anaturallylonglifetimewithV 3γbeingtheonlyde- asdetailedintheprevioussection. → cay mode. ThereforeV can evenbe a darkmatter candi- InregionsI,Vdecaystoe+e resultinelectromagnetic − date [6, 34] and ensuing constraints on the photoelectric energyinjection.RegionIa(τ 105s)ismarkedbyade- V ∼ absorption of V on atoms in dark matter detectors have struction of 7Be and D. The 7Li/H abundanceis reduced startedtoreceiveattentiononlyveryrecently[34–37]. to4 10 10 and3 10 10 fromtheoutsidetotheinside, − − × × respectively. However, cosmologically favored smaller 7Li/H abundances are challenged by3He/D < 1 (pink Acknowledgements shaded region). Using (12), lower 7Li/H values are ex- The speaker thanks S. Eidelman for the invitation to the cludedbythenominal2σlowerlimitonD/Hasdepicted workshop. JPissupportedbytheNewFrontiersprogram bythesolidclosedline. RegionIbisadditionallymarked bytheAustrianAcademyofSciences. by spallation of 7Li and 7Be from non-thermal photons. Thisresultsindirectproductionof6Li/H>10 12—values − yet too low for being observationally constrained at the References moment. Finally, Region Ic with τ 107s is marked V ∼ [1] M.PospelovandJ.Pradler,Ann.Rev.Nucl.Part.Sci. by 4He dissociationandnetcreationof3He/D rulingout 60,539(2010)[arXiv:1011.1054[hep-ph]]. thisparameterregion. Secondaryproductionof6Liisnot [2] R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, efficientenoughtoyieldanadditionallimit. S. Andreas, T. Averett, O. Baker and B. Batell et al., In region II, τ < 100s and V decays before the V arXiv:1311.0029[hep-ph]. end of the D-bottleneck (T 100keV). Injection of pi- ∼ [3] B.Holdom,Phys.Lett.B166,196(1986). ons, kaons, and nucleons, results in anomalous n p ↔ [4] B.Batell, M.PospelovandA.Ritz, Phys.Rev.D79, inter-conversion. The consequence is an elevated n/p- ratioandthereforeenhancedD and4Heyields. Thelow- 115008(2009)[arXiv:0903.0363[hep-ph]]. lifetime/high-abundanceregionII is correspondinglydis- [5] M.PospelovandJ.Pradler,Phys.Rev.D82,103514 favoredbyY 0.26andD/H 3 10 5. (2010)[arXiv:1006.4172[hep-ph]]. p − ≤ ≤ × Finally,regionIIIismarkedbytheproductionof“ex- [6] J. Redondo and M. Postma, JCAP 0902, 005 (2009) tra neutrons”att 103s fromV nn¯ and fromcharge [arXiv:0811.0326[hep-ph]]. ∼ → exchange of π on protons, π p nπ0 or π p nγ. [7] A.Fradette,M.Pospelov,J.PradlerandA.Ritz,Phys. − − − → → Inaddition,hyperonproductionby“s-quark”exchangeof Rev.D90,035022(2014)[arXiv:1407.0993[hep-ph]]. K on protonsmay also result in extra neutrons. With it [8] H.An,M.PospelovandJ.Pradler,Phys.Lett.B725, − comesapaththatmaydepletelithium,7Be+n 7Li+p, 190(2013)[arXiv:1302.3884[hep-ph]]. → EPJWebofConferences [9] H. An, M. Pospelov and J. Pradler, Phys. Rev. Lett. [24] Prantzos, N., Vangioni-Flam, E. and Cassé, M. 111,041302(2013)[arXiv:1304.3461[hep-ph]]. 1993, Origin and evolution of the elements. Proceed- [10] J. Redondo and G. Raffelt, JCAP 1308, 034 (2013) ings., Cambridge University Press, Cambridge (UK), [arXiv:1305.2920[hep-ph]]. 1993 [11] J.P.Leesetal.[BaBarCollaboration],Phys.Rev.D [25] F. Spite and M. Spite, Astron. Astrophys. 115, 357 86,032013(2012)[arXiv:1205.2228[hep-ex]]. (1982). [12] J.P.Leesetal.[BaBarCollaboration],Phys.Rev.D [26] B.D.Fields,Ann.Rev.Nucl.Part.Sci.61,47(2011) 88,no.3,032013(2013)[arXiv:1306.3600[hep-ex]]. [arXiv:1203.3551[astro-ph.CO]]. [13] E. Braaten and D. Segel, Phys. Rev. D 48, 1478 [27] J.Beacham,EPJWebConf.73,07011(2014). (1993)[hep-ph/9302213]. [28] A.Celentano[theHPSCollaboration],J.Phys.Conf. [14] R.H.Cyburt,J.R.Ellis,B.D.FieldsandK.A.Olive, Ser.556,no.1,012064(2014). Phys.Rev.D67,103521(2003)[astro-ph/0211258]. [29] M. Battaglieri et al. [BDX Collaboration], [15] A. Antonelli, R. Baldini, P. Benasi, M. Bertani, arXiv:1406.3028[physics.ins-det]. M.E.Biagini,V.Bidoli,C.BiniandT.Bressanietal., [30] F. Curciarello [KLOE/KLOE-2 Collaboration], EPJ Nucl.Phys.B517,3(1998). WebConf.72,00004(2014). [16] L.Kawano,FERMILAB-PUB-92-004-A. [31] H. Merkel [A1 Collaboration], EPJ Web Conf. 81, [17] R. H. Cyburt, B. D. Fields and K. A. Olive, JCAP 01020(2014). 0811,012(2008)[arXiv:0808.2818[astro-ph]]. [32] M. Raggi and V. Kozhuharov, Adv. High En- [18] Y.I.IzotovandT.X.Thuan,Astrophys.J.710,L67 ergy Phys. 2014, 959802 (2014) [arXiv:1403.3041 (2010)[arXiv:1001.4440[astro-ph.CO]]. [physics.ins-det]]. [19] E. Aver, K. A. Olive, R. L. Porter and E. D. Skill- [33] R.Essig,P.Schuster,N.ToroandB.Wojtsekhowski, man,JCAP1311,017(2013)[arXiv:1309.0047[astro- JHEP1102,009(2011)[arXiv:1001.2557[hep-ph]]. ph.CO]]. [34] M.Pospelov,A.RitzandM.B.Voloshin,Phys.Rev. [20] M. Pettini and R. Cooke, Mon. Not. Roy. As- D78,115012(2008)[arXiv:0807.3279[hep-ph]]. tron. Soc. 425, 2477 (2012) [arXiv:1205.3785 [astro- [35] K.Arisaka,P.Beltrame,C.Ghag,J.Kaidi,K.Lung, ph.CO]]. A. Lyashenko, R. D. Peccei and P. Smith et al., As- [21] R.Cooke,M.Pettini,R.A.Jorgenson,M.T.Murphy tropart. Phys. 44, 59 (2013) [arXiv:1209.3810 [astro- andC.C.Steidel,arXiv:1308.3240[astro-ph.CO]. ph.CO]]. [22] S. Burles and D. Tytler, Astrophys. J. 507, 732 [36] K. Abe et al. [XMASS Collaboration], Phys. Rev. (1998)[astro-ph/9712109]. Lett. 113, 121301 (2014) [arXiv:1406.0502 [astro- [23] D. Kirkman, D. Tytler, N. Suzuki, J. M. O’Meara ph.CO]]. and D. Lubin, Astrophys. J. Suppl. 149, 1 (2003) [37] H. An, M. Pospelov, J. Pradler and A. Ritz, [astro-ph/0302006]. arXiv:1412.8378[hep-ph].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.