ebook img

Nuclear Methods in Mineralogy and Geology: Techniques and Applications PDF

558 Pages·1998·19.417 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nuclear Methods in Mineralogy and Geology: Techniques and Applications

Nuclear Methods in Mineralogy and Geology Techniques and Applications Nuclear Methods in Mineralogy and Geology Techniques and Applications Edited by Attila Vertes Sändor Nagy and Käroly Süvegh Eötvös Lorano University Budapest, Hungary Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Data On file ISBN 978-1-4613-7447-3 ISBN 978-1-4615-5363-2 (eBook) DOI 10.1007/978-1-4615-5363-2 © 1998 Springer Science+Business Media New York Originally published by Plenum Press,New York in 1998 Softcover reprint of the hardcover 1st edition 1998 http://www.plenum.com 10987654321 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Preface This book appears a century after the discovery of radioactivity. It was in 1896, when Henri Becquerel reported his first results about the penetrating radiation, which could darken the packed photographic plates. The initial fascination of radioactivity, e.g., the discovery of new radioactive elements, the first real description of the structure of atoms and their nuclei, the applications of radiotracers, the high sensitivity of activation analysis, etc., was followed by the use of atomic bomb in 1945. The mushroom cloud became a symbol of destructive nuclear power. And even nuclear energy production (which provides about 20% of the world's electricity) is overshadowed by radioactive waste. However, the latest results suggest that the Accelerator-Driven Transmutation Technology (ADTT) will solve this problem, since this technique can decrease the lifetime of the fission products comparatively to the human lifespan. Practical control of fusion may also be possible in the first decades of the next millennium. In spite of the preconceptions formed against nuclear research, it is indisputable that the development of the science and technology has been very strongly influenced by the results of nuclear physics and chemistry in the 20th century. Thirty-six Nobel prizes have been shared by about 50 nuclear scientists in this century and the tendencies show that several fields of nuclear research will have a unique importance in the 21st century as well. (For example, the applications of radioactive nuclides for medical diagnosis.) In this monograph we present only peaceful and useful applications of nuclear science and technique. We (the authors and editors of this book) hope that the scientists, experts, and students of mineralogy and geology can make use of our work when they are looking for a fast, easy, cheap, and precise method to solve their actual problems. We also believe that our colleagues in nuclear sciences, leafing through our book, can collect some useful ideas for applications of their tools. Attila Vertes Sandor Nagy Karoly Siivegh v Contents 1. BASICS OF NUCLEAR SCIENCE S. Nagy, K. Siivegh, and A. Vertes Introduction 1.1. The atomic nucleus 1.1.1. Basic concepts 1 1.1.2. Subatomic particles, fundamental forces and nuclear potential 3 1.1.3. The nuclear radius 8 1.1.4. Multipole moments 11 1.1.5. Electronic environment and nuclear energy levels 12 1.1.6. Shell model, nuclear spin and nuclear magnetic moment 13 1.1. 7. Binding energy characteristics and nuclear stability 20 1.2. Radioactive decay 27 1.2.1. Kinetics of radioactive decay 28 1.2.2. Units of radioactivity 29 1.2.3. Successive decays 30 1.2.4. Radioactive equilibrium 33 1.2.5. Alpha decay 36 1.2.6. Positive and negative beta decay 39 1.2.7. Electron capture - beta decay without electron emission 41 1.2.8. Spontaneous fission 42 1.2.9. Isomeric transition 42 1.3. Nuclear reactions 44 1.3.1. Reaction mechanisms 45 1.3.2. Types of nuclear reactions 47 1.3.3. Nucleosynthesis - the evolution of the chemical elements 55 1.4. Interaction of nuclear radiation with matter 60 1.4.1. The interaction of alpha radiation with matter 60 1.4.2. The interaction of electron radiation with matter 62 1.4.3. Interaction of gamma radiation with matter 70 1.4.4. Complex interactions 77 1.5. Detection of radiation 80 1.5.1. Basic principles of radiation detection 80 1.5.2. Gas-ionisation detectors 88 1.5.3. Scintillation detectors 91 1.5.4. Semiconductor ·detectors 94 1.5.5. Radiation-dose measurements 100 vii 1.6. Variations of stable isotope ratios in nature 102 1.6.1. The origin ofthe variations 102 1.6.2. Variations in the isotope ratio of some light elements in nature 103 1.6.3. Applications 107 1. 7. References 112 2. NEUTRON ACTIVATION ANALYSIS M. Balla, G. Keomley, and Zs. Molnar Introduction 115 2.1. The principles of the method 116 2.1.1. Neutron sources 118 2.1.2. Kinetics of activation 119 2.2. Choosing the appropriate procedure 122 2.2.1. Irradiation conditions 122 2.2.2. Measurement of radioactivity 123 2.2.3. Experimental parameters 123 2.3. Special procedures of neutron activation analysis 123 2.3.1. Chemical separation 123 2.3.2. Epithermal neutron activation analysis 125 2.4. Methods of standardisation 126 2.4.1. Absolute method 126 2.4.2. Classic relative method 126 2.4.3. Single comparator method 127 2.4.4. The ko-standardisation method 128 2.5. Measurement and evaluation 128 2.5.1. Analysis of the gamma spectra 129 2.5.2. Counting statistics 130 2.6. Application ofNAA in geology 130 2.6.1. Mineral analysis 130 2.6.2. Bulk rock analysis 134 2.6.3. The analysis of ores 138 2.6.4. Geophysical well logging (NAA in boreholes) 141 2.7. References 141 3. NUCLEAR REACTION PROMPT GAMMA-RAY ANALYSIS G. L. Molnar and R. M. Lindstrom Introduction 145 3.1. Methods based on gamma rays from nuclear reactions 146 3.1.1. Neutron7capture prompt gamma activation analysis 147 3.1.2. Neutron inelastic scattering and reaction analysis 151 3.1.3. Charged particle-induced gamma-ray emission 152 3.2. Special techniques for in-beam experiments 152 3.2.1. Guided and focused cold neutron beams 152 3.2.2. Sophisticated gamma-ray spectrometers 154 3.2.3. Analysis of complex gamma-ray spectra 158 3.3. Applications of prompt gamma methods in mineral analysis 159 3.3.1. In situ analysis: borehole logging 161 3.3.2. On-line analysis of coal and minerals 162 3.3.3. Laboratory analysis 162 3.4. References 163 viii 4. ENERGY DISPERSIVE X-RAY FLUORESCENCE ANALYSIS J. Bacsn, A. P&zsit, and A. Somogyi Introduction 165 4.1. Basics ofXRFA 166 4.1.1. Methods ofXRFA 172 4.2. Instrumentation ofEDXRFA 175 4.2.1. Types of excitation 175 4.2.2. Detection 176 4.3. Sample preparation 179 4.3.1. Loose powder 180 4.3.2. Pellets 181 4.3.3. Fused disks 181 4.3.4. Thin film technique 182 4.3.5. Solution after decomposition 182 4.3.6. Other preconcentration methods 183 4.4. Spectrum evaluation techniques 183 4.4.1. Noise sources and information content of spectra 184 4.4.2. Constituents of X-ray spectrum 184 4.4.3. Background estimation 186 4.4.4. Peak area determination 186 4.4.5. Fitting methods for spectrum evaluation 188 4.4.6. Computer programs 190 4.5. Peak intensity and concentration 190 4.6. Sensitivity, detection limit 194 4.7. Methods of quantitative analysis 197 4.7.1. Experimental methods 197 4.7.2. Mathematical methods 200 4.8. New trends for improvement of sensitivity 204 4.8.1. Application of polarized X-rays for excitation 205 4.8.2. Total reflection method 206 4.9. Special cases raising distinguished attention 208 4.9.1. Radionuc1ide excitation 208 4.10. References 214 5. CHARACTERIZATION OF GEOLOGICAL MATERIALS USING ION AND PHOTON BEAMS Sz. B. Tiiriik, K. W. Jones, and C. Tuniz Introduction 217 5.1. Synchrotron radiation analysis 217 5.1.1. Synchrotron radiation facilities 217 5.1.2. Properties of synchrotron radiation 218 5.1.3. X-ray microscopes 220 5.1.4. Sensitivity and minimum detection limits for XRF 223 5.1.5. Applications ofXRM 224 5.2. Ion beam analysis 226 5.2.1. Nuclear and X- ray data sources 227 5.2.2. Accelerator facilities 227 5.2.3. Nuclear reaction analysis 228 5.2.4. PlXE analysis 233 5.2.5. Applications ofiBA in geology 234 ix 5.3. Accelerator mass spectrometry 240 5.3.1. AMS with tandem accelerators 241 5.3.2. AMS microprobes 242 5.3.3. Long-lived radionuclides 242 5.3.4. Stable isotopes 246 5.3.5. Actinides 246 5.3.6. Acknowledgement 246 5.4. References 246 6. NUCLEAR MAGNETIC RESONANCE IN GEOSCIENCES K. Tompa Introduction 251 6.1. Elements ofNMR 252 6.1.1 Nuclear characteristics 252 6.1.2. Local magnetic fields 253 6.1.3. Quantum mechanical elements 254 6.1.4. Classical treatment - vector model 255 6.1.5. Bloch equations 256 6.2. Interactions and consequences 257 6.2.1. Dipole-dipole interaction 257 6.2.2. Chemical shielding interaction 258 6.2.3. Electric field gradients 258 6.2.4. Classification of Hamiltonians and consequences 259 6.3. Experimental aspects ofNMR spectroscopy 259 6.3.1. Continuous wave NMR 260 6.3.2. Pulsed NMR 260 6.3.3. Simple pulse combinations 262 6.3.4. High resolution NMR on solids 264 6.3.5. Decoupling, double resonance, cross polarization 264 6.3.6. Two-dimensional NMR spectroscopy 265 6.3.7. NMR imaging 266 6.4. Examples of the application ofNMR in the geosciences 267 6.4.1. Measurement of the Earth's magnetic field 267 6.4.2. Minerals 268 6.4.3. Zeolites 273 6.4.4. Coals 278 6.5. References 282 7. GEOLOGICAL AND MINERALOGICAL APPLICATIONS OF MOSSBAUER SPECTROSCOPY E. Kuzmann, S. Nagy, A. Vertes, T. G.Weiszburg, and V. K. Garg Introduction 285 7.1. Basic principles of Mossbauer spectroscopy 285 7.1.1. Mossbauer parameters 286 7.1.2. Dependence of the Mossbauer parameters on physical parameters 289 7.1.3. Measurement of Mossbauer spectra 295 7.2. Analytical information from Mossbauer spectra 299 7.2.1. The fingerprint method 299 7.2.2. Pattern analysis 299 7.2.3. Spectrum decomposition 301 7.2.4. Databases for analytical Mossbauer spectroscopy 304 7.2.5. Quantitative analysis 305 7.3. Applications in mineralogy 306 7.3.1. Valence state determination 306 7.3.2. Site determination 313 x 7.3.3. Characterization of magnetic state 322 7.3.4. Grain size determination 328 7.3.5. Biomineralogy 331 7.3.6. Amorphous and poorly crystallized state 332 7.4. Geological applications 334 7.4.1. General applications 334 7.4.2. Magmatic and metamorphic rocks and processes 338 7.4.3. Sedimentary rocks and sediments 344 7.4.4. Weathering processes 345 7.4.5. Soils 351 7.4.6. Radiation effects 352 7.5. Planetological applications 354 7.5.1. Lunar geology 354 7.5.2. Meteorites 359 7.5.3. Mars 364 7.6. Systematic Mossbauer mineralogy 368 7.6.1. Elements 368 7.6.2. Sulphides 368 7.6.3. Halogenides 368 7.6.4. Oxides and hydroxides 368 7.6.5. Nitrates, carbonates and borates 369 7.6.6. Sulphates, chromates, molybdates and wolframates 370 7.6.7. Phosphates, arsenates and vanadates 370 7.6.8. Silicates 370 7.6.9. Organic minerals 373 7.7. References 373 8. RADIOACTIVE DATING METHODS R. Bowen Introduction 377 8.1. Argon/argon 378 8.1.1. Methodology 378 8.1.2. Incremental heating 379 8.1.3. Argon release by laser 380 8.2. Caesium-137/caesium-135 as a chronometer-tracer 381 8.2.1. Application 381 8.3. Cosmogenic radionuclides 382 8.3.1. Aluminum-26 382 8.3.2. Argon-39 382 8.3.3. Beryllium-7 382 8.3.4. Beryllium-lO 383 8.3.5. Chlorine-36 383 8.3.6. Krypton-81 and krypton-85 384 8.3.7. Silicon-32 384 8.4. Electron spin resonance (ESR) 384 8.5. Fission track dating (FTD) 385 8.6. Iodine/xenon 386 8.7. Lutetiumlhafuium 387 8.7.1. Methodology 387 8.7.2. Assessment of ages 387 8.7.3. Isochrons 387 8.7.4. Hafuium through time 387 8.8. Osmium/osmium 389 8.8.1. Methodology 389 8.9. Polonium/lead 390 8.9.1. Methodology 390 xi 8.10. Potassium/argon 392 8.10.1. Methodology 392 8.10.2. Argon loss 393 8.10.3. Isochrons 394 8.11. Potassium/calcium 395 8.12. Pleochroic haloes 395 8.13. Radiocarbon 396 8.14. Rhenium/osmium 399 8.15. Rubidium/strontium 400 8.15.1. Real and fictitious isochrons 401 8.16. Samarium/neodymium 402 8.17. Thermoluminescence (TL) 404 8.18. Tritium404 8.19. Uranium series disequilibrium dating 405 8.19.1. Ionium 405 8.19.2. Ionium/protactinium 406 8.19.3. Lead-21O 407 8.19.4. Thorium-230, uranium-238 and thorium-230, uranium-234 408 8.19.5. The uranium-234, uranium-238 geochronometer 409 8.20. Uranium/thorium/lead 410 8.20.1. Radioactive decay series 410 8.20.2. Concordia and discordia 414 8.20.3. Common lead and the HolmeslHoutermans model 415 8.20.4. Anomalous leads 418 8.20.5. Multistage leads 418 8.20.6. Whole rock dating 419 8.21. Uranium/xenon, uraniumlkrypton 419 8.21.1. Fissiogenic rare cases in the atmosphere 422 8.22. References 422 9. RADIOMETRIC METHODS FOR DATING GROUNDWATER E. Hertelendi 9.1. Radiocarbon dating of groundwater 425 Introduction 425 9.1.1. Extraction of dissolved inorganic carbon (DIC) 425 9.1.2. Extraction of dissolved organic carbon (DOC) 429 9.1.3. Proportional gas counting techniques (PC) 430 9.1.4. Liquid scintillation counting (LSC) 433 9.1.5. Accelerator mass spectrometry 435 9.1.6. Radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater 437 9.1.7. Radiocarbon dating of dissolved organic carbon (DOC) in groundwater 439 9.2. Tritium method 440 Introduction 440 9.2.1. Sampling of water for tritium dating 441 9.2.2. Sample preparation 441 9.2.3. Methods of enrichment 441 9.2.4. Low-level tritium determination by the 3He ingrowth method 442 9.2.5. Tritiumlhelium-3 (3H/3He) method 442 9.2.6. Mass spectrometric tritium measurement 443 9.3. Dating young groundwaters by measurement of85Kr 445 9.3 .1. Sources of 85Kr in the atmosphere and precipitation 445 9.3.2. Measurement technique of85Kr 446 9.4. References 448 xii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.