ebook img

Notes on Abstract Algebra PDF

314 Pages·2011·2.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Notes on Abstract Algebra

Notes on Abstract Algebra JohnPerry UniversityofSouthernMississippi [email protected] http://www.math.usm.edu/perry/ Copyright2009JohnPerry www.math.usm.edu/perry/ CreativeCommonsAttribution-Noncommercial-ShareAlike3.0UnitedStates Youarefree: • toShare—tocopy,distributeandtransmitthework • toRemix—toadaptthework Underthefollowingconditions: • Attribution—Youmustattributetheworkinthemannerspecifiedbytheauthororlicen- sor(butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework). • Noncommercial—Youmaynotusethisworkforcommercialpurposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the resultingworkonlyunderthesameorsimilarlicensetothisone. Withtheunderstandingthat: • Waiver—Any of the above conditions can be waived if you get permission from the copy- rightholder. • OtherRights—Innowayareanyofthefollowingrightsaffectedbythelicense: ◦ Yourfairdealingorfairuserights; ◦ Apartfromtheremixrightsgrantedunderthislicense,theauthor’smoralrights; ◦ Rights other persons may have either in the work itself or in how the work is used, suchaspublicityorprivacyrights. • Notice—Foranyreuseordistribution,youmustmakecleartoothersthelicensetermsof thiswork. Thebestwaytodothisiswithalinktothiswebpage: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode Table of Contents Reference sheet for notation...........................................................iv A few acknowledgements..............................................................vi Preface...............................................................................vii Overview...........................................................................vii Three interesting problems ............................................................ 1 Part . Monoids 1. From integers to monoids...........................................................4 1. Somefactsabouttheintegers ......................................................... 5 2. Integers,monomials,andmonoids...................................................11 3. DirectProductsandIsomorphism....................................................15 Part I. Groups 2. Groups ............................................................................ 22 1. Groups...........................................................................22 2. Thesymmetriesofatriangle.........................................................29 3. Cyclicgroupsandorder ............................................................ 36 4. EllipticCurves .................................................................... 43 3. Subgroups.........................................................................47 1. Subgroups.........................................................................47 2. Cosets............................................................................51 3. Lagrange’sTheorem................................................................56 4. QuotientGroups .................................................................. 59 5. “Clockwork”groups................................................................64 6. “Solvable”groups..................................................................67 4. Isomorphisms......................................................................72 1. Fromfunctionstoisomorphisms.....................................................72 2. Consequencesofisomorphism ....................................................... 78 3. TheIsomorphismTheorem..........................................................83 4. Automorphismsandgroupsofautomorphisms.........................................87 5. Groups of permutations............................................................92 1. Permutations......................................................................92 2. Groupsofpermutations ........................................................... 101 3. Dihedralgroups .................................................................. 103 4. Cayley’sTheorem.................................................................108 5. Alternatinggroups................................................................111 i 6. The15-puzzle .................................................................... 116 6. Number theory...................................................................119 1. GCDandtheEuclideanAlgorithm.................................................119 2. TheChineseRemainderTheorem...................................................123 3. Multiplicativeclockworkgroups....................................................130 4. Euler’sTheorem..................................................................136 5. RSAEncryption..................................................................140 Part II. Rings 7. Rings.............................................................................147 1. Astructureforadditionandmultiplication..........................................147 2. IntegralDomainsandFields ....................................................... 150 3. Polynomialrings ................................................................. 155 4. Euclideandomains................................................................163 8. Ideals.............................................................................169 1. Ideals............................................................................169 2. PrincipalIdeals...................................................................175 3. Primeandmaximalideals.........................................................178 4. QuotientRings...................................................................181 5. FiniteFieldsI .................................................................... 186 6. Ringisomorphisms ............................................................... 192 7. AgeneralizedChineseRemainderTheorem..........................................197 8. Nullstellensatz....................................................................200 9. Rings and polynomial factorization................................................203 1. Thelinkbetweenfactoringandideals ............................................... 203 2. UniqueFactorizationdomains ..................................................... 206 3. FinitefieldsII ....................................................................209 4. Polynomialfactorizationinfinitefields..............................................214 5. Factoringintegerpolynomials......................................................219 10. Gröbner bases ................................................................... 224 1. Gaussianelimination............................................................225 2. Monomialorderings ............................................................. 231 3. Matrixrepresentationsofmonomialorderings ...................................... 238 4. ThestructureofaGröbnerbasis...................................................241 5. Buchberger’salgorithm...........................................................251 6. Elementaryapplications..........................................................259 11. Advanced methods of computing Gröbner bases..................................264 1. TheGebauer-Mölleralgorithm .................................................... 264 2. TheF4algorithm................................................................273 ii 3. Signature-basedalgorithmstocomputeaGröbnerbasis...............................278 Part III. Appendices Where can I go from here?...........................................................287 Advancedgrouptheory.............................................................287 Advancedringtheory .............................................................. 287 Applications.......................................................................287 Hints to Exercises ................................................................... 288 HintstoChapter1.................................................................288 HintstoChapter2.................................................................288 HintstoChapter3.................................................................290 HintstoChapter4.................................................................291 HintstoChapter5.................................................................291 HintstoChapter6.................................................................292 HintstoChapter7.................................................................293 HintstoChapter8.................................................................294 HintstoChapter9.................................................................295 HintstoChapter10................................................................295 Index................................................................................296 References...........................................................................300 iii Reference sheet for notation [r] theelement r +nZofZ n 〈 〉 g thegroup(orideal)generatedby g A thealternatinggrouponthreeelements 3 (cid:47) A G forG agroup,AisanormalsubgroupofG (cid:47) A R for Raring,Aisanidealof R (cid:112) C thecomplexnumbers{a+bi : a,b ∈Cand i = −1} [G,G] commutatorsubgroupofagroupG [x,y] for x and y inagroupG,thecommutatorof x and y Conj (H) thegroupofconjugationsof H bya a conj (x) theautomorphismofconjugationby g g D thesymmetriesofatriangle 3 | d n d divides n degf thedegreeofthepolynomial f D thedihedralgroupofsymmetriesofaregularpolygonwith n sides n D (R) thesetofalldiagonalmatriceswhosevaluesalongthediagonalisconstant n Z d thesetofintegermultiplesof d f (G) for f ahomomorphismandG agroup(orring),theimageofG F anarbitraryfield Frac(R) thesetoffractionsofacommutativering R G/A thesetofleftcosetsofA \ G A thesetofrightcosetsofA gA theleftcosetofAwith g ∼ G =H G isisomorphicto H GL (R) thegenerallineargroupofinvertiblematrices m (cid:81)n G theordered n-tuplesofG ,G ,...,G i=1 i 1 2 n × G H theorderedpairsofelementsofG and H gz forG agroupand g,z ∈G,theconjugationof g by z,or zgz−1 < H G forG agroup, H isasubgroupofG kerf thekernelofthehomomorphism f lcm(t,u) theleastcommonmultipleofthemonomials t and u lm(p) theleadingmonomialofthepolynomial p lv(p) theleadingvariableofalinearpolynomial p M thesetofmonomialsinonevariable M thesetofmonomialsin n variables n N+ thepositiveintegers N (H) thenormalizerofasubgroup H ofG G N { } thenaturalorcountingnumbers 0,1,2,3... ord(x) theorderof x P thepointatinfinityonanellipticcurve ∞ Q thegroupofquaternions 8 Q therationalnumbers{a : a,b ∈Zand b (cid:54)=0} b R/A for R a ring and Aan ideal subring of R, R/Ais the quotient ring of R with respecttoA 〈 〉 r ,r ,...,r theidealgeneratedby r ,r ,...,r 1 2 m 1 2 m R therealnumbers,thosethatmeasureanylengthalongaline Rm×m m×m matriceswithrealcoefficients R[x] polynomialsinonevariablewithrealcoefficients R[x ,x ,...,x ] polynomialsin n variableswithrealcoefficients 1 2 n R[x ,x ,...,x ] theringofpolynomialswhosecoefficientsareinthegroundring R 1 2 n α swp thesignfunctionofacycleorpermutation S thegroupofallpermutationsofalistof n elements n × S T theCartesianproductofthesets S andT tts(p) thetrailingtermsof p Z(G) centralizerofagroupG Z∗ Z thesetofelementsof thatarenot zerodivisors n n Z Z Z Z /n quotientgroup(resp. ring)of modulothesubgroup(resp. ideal) n Z { − } (cid:112) theintegers ..., 1,0,1,2,(cid:112)... (cid:148) (cid:151) Z − − 5 theringofintegers,adjoin 5 Z Z Z thequotientgroup /n n v A few acknowledgements [ Thesenotesareinspiredfromsomeofmyfavoritealgebratexts: AF05,CLO97,HA88, ] KR00, Lau03, LP98, Rot06, Rot98 . The heritage is hopefully not too obvious, but in some placesIfeltcompelledtocitethesource. Thanks to the students who found typos, including (in no particular order) Jonathan Yarber,KyleFortenberry,LisaPalchak,AshleySanders,SedrickJefferson,ShainaBarber,Blake Watkins, and others. Special thanks go to my graduate student Miao Yu, who endured the first draftsofChapters7,8,and10. RogérioBritoofUniversidadedeSãoPaolomadeseveralhelpfulcomments,foundsome nastyerrors1,andsuggestedsomeoftheexercises. Ihavebeenluckytohavehadgreatalgebraprofessors;inchronologicalorder: • VanessaJobatMarymountUniversity; • AdrianRiskinatNorthernArizonaUniversity; • andatNorthCarolinaStateUniversity: ◦ KwangilKoh, ◦ HoonHong, ◦ ErichKaltofen, ◦ MichaelSinger,and ◦ AgnesSzanto. Boneheaded innovations of mine that looked good at the time but turned out bad in practice shouldnotbeblamedonanyoftheindividualsorsourcesnamedabove. Afterall,theyevaluated previousworkofmine,sotheconceptthatImightsaysomethingdumbwon’tcomeasasurprise tothem,andtheytriedveryhardtocuremeofthathabit. Thisisnotapeer-reviewedtext,which iswhyyouhaveasupplementarytextinthebookstore. Thefollowingsoftwarehelpedpreparethesenotes: • [ ] Sage3.xandlater Ste08 ; • [ ] [ ] [ ] Lyx Lyx (and therefore LATEX Lam86, Grä04 (and therefore TEX Knu84 )), along withthepackages ◦ cc-beamer[Pip07], ◦ hyperref[RO08], ◦ AMS-LATEX[Soc02], ◦ mathdesign[Pic06],and ◦ algorithms(modifiedslightlyfromversion2006/06/02)[Bri];and • [ ] Inkscape Bah08 . I’velikelyforgottensomeothernon-trivialresourcesthatIused. Letmeknowifanothercitation belongshere. Mywifeforeboreanumberoflatenightsattheoffice(orathome)asIworkedonthese. AdmaioremDeigloriam. 1Inoneegregiousexample,IconnectedtoomanydotsregardingtheoriginoftheChineseRemainderTheorem.

Description:
Cyclic groups and order . Advanced group theory . you guess? 9In particular, you should have seen these in MAT 340, Discrete Mathematics.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.