Notes on Abstract Algebra JohnPerry UniversityofSouthernMississippi [email protected] http://www.math.usm.edu/perry/ Copyright2009JohnPerry www.math.usm.edu/perry/ CreativeCommonsAttribution-Noncommercial-ShareAlike3.0UnitedStates Youarefree: • toShare—tocopy,distributeandtransmitthework • toRemix—toadaptthework Underthefollowingconditions: • Attribution—Youmustattributetheworkinthemannerspecifiedbytheauthororlicen- sor(butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework). • Noncommercial—Youmaynotusethisworkforcommercialpurposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the resultingworkonlyunderthesameorsimilarlicensetothisone. Withtheunderstandingthat: • Waiver—Any of the above conditions can be waived if you get permission from the copy- rightholder. • OtherRights—Innowayareanyofthefollowingrightsaffectedbythelicense: ◦ Yourfairdealingorfairuserights; ◦ Apartfromtheremixrightsgrantedunderthislicense,theauthor’smoralrights; ◦ Rights other persons may have either in the work itself or in how the work is used, suchaspublicityorprivacyrights. • Notice—Foranyreuseordistribution,youmustmakecleartoothersthelicensetermsof thiswork. Thebestwaytodothisiswithalinktothiswebpage: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode Table of Contents Reference sheet for notation...........................................................iv A few acknowledgements..............................................................vi Preface...............................................................................vii Overview...........................................................................vii Three interesting problems ............................................................ 1 Part . Monoids 1. From integers to monoids...........................................................4 1. Somefactsabouttheintegers ......................................................... 5 2. Integers,monomials,andmonoids...................................................11 3. DirectProductsandIsomorphism....................................................15 Part I. Groups 2. Groups ............................................................................ 22 1. Groups...........................................................................22 2. Thesymmetriesofatriangle.........................................................29 3. Cyclicgroupsandorder ............................................................ 36 4. EllipticCurves .................................................................... 43 3. Subgroups.........................................................................47 1. Subgroups.........................................................................47 2. Cosets............................................................................51 3. Lagrange’sTheorem................................................................56 4. QuotientGroups .................................................................. 59 5. “Clockwork”groups................................................................64 6. “Solvable”groups..................................................................67 4. Isomorphisms......................................................................72 1. Fromfunctionstoisomorphisms.....................................................72 2. Consequencesofisomorphism ....................................................... 78 3. TheIsomorphismTheorem..........................................................83 4. Automorphismsandgroupsofautomorphisms.........................................87 5. Groups of permutations............................................................92 1. Permutations......................................................................92 2. Groupsofpermutations ........................................................... 101 3. Dihedralgroups .................................................................. 103 4. Cayley’sTheorem.................................................................108 5. Alternatinggroups................................................................111 i 6. The15-puzzle .................................................................... 116 6. Number theory...................................................................119 1. GCDandtheEuclideanAlgorithm.................................................119 2. TheChineseRemainderTheorem...................................................123 3. Multiplicativeclockworkgroups....................................................130 4. Euler’sTheorem..................................................................136 5. RSAEncryption..................................................................140 Part II. Rings 7. Rings.............................................................................147 1. Astructureforadditionandmultiplication..........................................147 2. IntegralDomainsandFields ....................................................... 150 3. Polynomialrings ................................................................. 155 4. Euclideandomains................................................................163 8. Ideals.............................................................................169 1. Ideals............................................................................169 2. PrincipalIdeals...................................................................175 3. Primeandmaximalideals.........................................................178 4. QuotientRings...................................................................181 5. FiniteFieldsI .................................................................... 186 6. Ringisomorphisms ............................................................... 192 7. AgeneralizedChineseRemainderTheorem..........................................197 8. Nullstellensatz....................................................................200 9. Rings and polynomial factorization................................................203 1. Thelinkbetweenfactoringandideals ............................................... 203 2. UniqueFactorizationdomains ..................................................... 206 3. FinitefieldsII ....................................................................209 4. Polynomialfactorizationinfinitefields..............................................214 5. Factoringintegerpolynomials......................................................219 10. Gröbner bases ................................................................... 224 1. Gaussianelimination............................................................225 2. Monomialorderings ............................................................. 231 3. Matrixrepresentationsofmonomialorderings ...................................... 238 4. ThestructureofaGröbnerbasis...................................................241 5. Buchberger’salgorithm...........................................................251 6. Elementaryapplications..........................................................259 11. Advanced methods of computing Gröbner bases..................................264 1. TheGebauer-Mölleralgorithm .................................................... 264 2. TheF4algorithm................................................................273 ii 3. Signature-basedalgorithmstocomputeaGröbnerbasis...............................278 Part III. Appendices Where can I go from here?...........................................................287 Advancedgrouptheory.............................................................287 Advancedringtheory .............................................................. 287 Applications.......................................................................287 Hints to Exercises ................................................................... 288 HintstoChapter1.................................................................288 HintstoChapter2.................................................................288 HintstoChapter3.................................................................290 HintstoChapter4.................................................................291 HintstoChapter5.................................................................291 HintstoChapter6.................................................................292 HintstoChapter7.................................................................293 HintstoChapter8.................................................................294 HintstoChapter9.................................................................295 HintstoChapter10................................................................295 Index................................................................................296 References...........................................................................300 iii Reference sheet for notation [r] theelement r +nZofZ n 〈 〉 g thegroup(orideal)generatedby g A thealternatinggrouponthreeelements 3 (cid:47) A G forG agroup,AisanormalsubgroupofG (cid:47) A R for Raring,Aisanidealof R (cid:112) C thecomplexnumbers{a+bi : a,b ∈Cand i = −1} [G,G] commutatorsubgroupofagroupG [x,y] for x and y inagroupG,thecommutatorof x and y Conj (H) thegroupofconjugationsof H bya a conj (x) theautomorphismofconjugationby g g D thesymmetriesofatriangle 3 | d n d divides n degf thedegreeofthepolynomial f D thedihedralgroupofsymmetriesofaregularpolygonwith n sides n D (R) thesetofalldiagonalmatriceswhosevaluesalongthediagonalisconstant n Z d thesetofintegermultiplesof d f (G) for f ahomomorphismandG agroup(orring),theimageofG F anarbitraryfield Frac(R) thesetoffractionsofacommutativering R G/A thesetofleftcosetsofA \ G A thesetofrightcosetsofA gA theleftcosetofAwith g ∼ G =H G isisomorphicto H GL (R) thegenerallineargroupofinvertiblematrices m (cid:81)n G theordered n-tuplesofG ,G ,...,G i=1 i 1 2 n × G H theorderedpairsofelementsofG and H gz forG agroupand g,z ∈G,theconjugationof g by z,or zgz−1 < H G forG agroup, H isasubgroupofG kerf thekernelofthehomomorphism f lcm(t,u) theleastcommonmultipleofthemonomials t and u lm(p) theleadingmonomialofthepolynomial p lv(p) theleadingvariableofalinearpolynomial p M thesetofmonomialsinonevariable M thesetofmonomialsin n variables n N+ thepositiveintegers N (H) thenormalizerofasubgroup H ofG G N { } thenaturalorcountingnumbers 0,1,2,3... ord(x) theorderof x P thepointatinfinityonanellipticcurve ∞ Q thegroupofquaternions 8 Q therationalnumbers{a : a,b ∈Zand b (cid:54)=0} b R/A for R a ring and Aan ideal subring of R, R/Ais the quotient ring of R with respecttoA 〈 〉 r ,r ,...,r theidealgeneratedby r ,r ,...,r 1 2 m 1 2 m R therealnumbers,thosethatmeasureanylengthalongaline Rm×m m×m matriceswithrealcoefficients R[x] polynomialsinonevariablewithrealcoefficients R[x ,x ,...,x ] polynomialsin n variableswithrealcoefficients 1 2 n R[x ,x ,...,x ] theringofpolynomialswhosecoefficientsareinthegroundring R 1 2 n α swp thesignfunctionofacycleorpermutation S thegroupofallpermutationsofalistof n elements n × S T theCartesianproductofthesets S andT tts(p) thetrailingtermsof p Z(G) centralizerofagroupG Z∗ Z thesetofelementsof thatarenot zerodivisors n n Z Z Z Z /n quotientgroup(resp. ring)of modulothesubgroup(resp. ideal) n Z { − } (cid:112) theintegers ..., 1,0,1,2,(cid:112)... (cid:148) (cid:151) Z − − 5 theringofintegers,adjoin 5 Z Z Z thequotientgroup /n n v A few acknowledgements [ Thesenotesareinspiredfromsomeofmyfavoritealgebratexts: AF05,CLO97,HA88, ] KR00, Lau03, LP98, Rot06, Rot98 . The heritage is hopefully not too obvious, but in some placesIfeltcompelledtocitethesource. Thanks to the students who found typos, including (in no particular order) Jonathan Yarber,KyleFortenberry,LisaPalchak,AshleySanders,SedrickJefferson,ShainaBarber,Blake Watkins, and others. Special thanks go to my graduate student Miao Yu, who endured the first draftsofChapters7,8,and10. RogérioBritoofUniversidadedeSãoPaolomadeseveralhelpfulcomments,foundsome nastyerrors1,andsuggestedsomeoftheexercises. Ihavebeenluckytohavehadgreatalgebraprofessors;inchronologicalorder: • VanessaJobatMarymountUniversity; • AdrianRiskinatNorthernArizonaUniversity; • andatNorthCarolinaStateUniversity: ◦ KwangilKoh, ◦ HoonHong, ◦ ErichKaltofen, ◦ MichaelSinger,and ◦ AgnesSzanto. Boneheaded innovations of mine that looked good at the time but turned out bad in practice shouldnotbeblamedonanyoftheindividualsorsourcesnamedabove. Afterall,theyevaluated previousworkofmine,sotheconceptthatImightsaysomethingdumbwon’tcomeasasurprise tothem,andtheytriedveryhardtocuremeofthathabit. Thisisnotapeer-reviewedtext,which iswhyyouhaveasupplementarytextinthebookstore. Thefollowingsoftwarehelpedpreparethesenotes: • [ ] Sage3.xandlater Ste08 ; • [ ] [ ] [ ] Lyx Lyx (and therefore LATEX Lam86, Grä04 (and therefore TEX Knu84 )), along withthepackages ◦ cc-beamer[Pip07], ◦ hyperref[RO08], ◦ AMS-LATEX[Soc02], ◦ mathdesign[Pic06],and ◦ algorithms(modifiedslightlyfromversion2006/06/02)[Bri];and • [ ] Inkscape Bah08 . I’velikelyforgottensomeothernon-trivialresourcesthatIused. Letmeknowifanothercitation belongshere. Mywifeforeboreanumberoflatenightsattheoffice(orathome)asIworkedonthese. AdmaioremDeigloriam. 1Inoneegregiousexample,IconnectedtoomanydotsregardingtheoriginoftheChineseRemainderTheorem.
Description: