ebook img

Nonparametric tests for censored data PDF

245 Pages·2.721 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonparametric tests for censored data

Non-parametric Tests for Censored Data Non-parametric Tests for Censored Data Vilijandas Bagdonavičius Julius Kruopis Mikhail S. Nikulin First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2011 The rights of Vilijandas Bagdonaviçius, Julius Kruopis and Mikhail S. Nikulin to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Cataloging-in-Publication Data Bagdonavicius, V. (Vilijandas) Nonparametric tests for censored data / Vilijandas Bagdonavicius, Julius Kruopis, Mikhail Nikulin. p. cm. ISBN 978-1-84821-289-3 (hardback) 1. Nonparametric statistics. 2. Statistical hypothesis testing. I. Kruopis, Julius. II. Nikulin, Mikhail (Mikhail S.) III. Title. QA278.8.B338 2010 519.5--dc22 2010038274 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-289-3 Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Terms and Notation . . . . . . . . . . . . . . . . . . . . . xv Chapter1. Censored and Truncated Data . . . . . . 1 1.1. Right-censored data . . . . . . . . . . . . . . . . . 2 1.2. Left truncation . . . . . . . . . . . . . . . . . . . . 12 1.3. Left truncation andrightcensoring . . . . . . . 14 1.4. Nelson–AalenandKaplan–Meierestimators . . 15 1.5. Bibliographicnotes . . . . . . . . . . . . . . . . . . 17 Chapter2. Chi-squared Tests . . . . . . . . . . . . . . 19 2.1. Chi-squaredtest for composite hypothesis . . . 19 2.2. Chi-squaredtest for exponential distributions . 31 2.3. Chi-squaredtests for shape-scaledistribution families . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1. Chi-squaredtest for the Weibulldistribution 39 2.3.2. Chi-squaredtests for the loglogistic distribution . . . . . . . . . . . . . . . . . . . . 44 2.3.3. Chi-squaredtest for the lognormal distribution . . . . . . . . . . . . . . . . . . . . 46 2.4. Chi-squaredtests for other families . . . . . . . 51 vi Non-parametricTestsforCensoredData 2.4.1. Chi-squaredtest for theGompertz distribution . . . . . . . . . . . . . . . . . . . . 53 2.4.2. Chi-squaredtest for distribution with hyperbolic hazardfunction . . . . . . . . . . . 56 2.4.3. Bibliographicnotes . . . . . . . . . . . . . . . . 59 2.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6. Answers . . . . . . . . . . . . . . . . . . . . . . . . . 60 Chapter3. HomogeneityTests for Independent Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 . 3.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2. Weightedlogrank statistics . . . . . . . . . . . . . 64 3.3. Logrank test statistics asweightedsumsof differences between observed andexpected numberof failures . . . . . . . . . . . . . . . . . . 66 3.4. Examplesof weights . . . . . . . . . . . . . . . . . 67 3.5. Weightedlogrank statistics asmodifiedscore statistics . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6. Thefirst twomoments of weighted logrank statistics . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7. Asymptotic properties of weightedlogrank statistics . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8. Weightedlogrank tests . . . . . . . . . . . . . . . 80 3.9. Homogeneity testing when alternativesare crossings of survivalfunctions . . . . . . . . . . 85 3.9.1. Alternatives . . . . . . . . . . . . . . . . . . . . 86 3.9.2. Modified score statistics . . . . . . . . . . . . . 88 3.9.3. Limitdistributionof the modifiedscore statistics . . . . . . . . . . . . . . . . . . . . . . 91 3.9.4. Homogeneity tests againstcrossing survival functionsalternatives . . . . . . . . . . . . . . 92 3.9.5. Bibliographicnotes . . . . . . . . . . . . . . . . 97 3.10. Exercises . . . . . . . . . . . . . . . . . . . . . . . . 98 3.11. Answers. . . . . . . . . . . . . . . . . . . . . . . . . 102 TableofContents vii Chapter4. HomogeneityTests for Related Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1. Pairedsamples . . . . . . . . . . . . . . . . . . . . 106 4.1.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.1.2. Test statistics . . . . . . . . . . . . . . . . . . . 107 4.1.3. Asymptotic distribution of the test statistic. 107 4.1.4. Thetest . . . . . . . . . . . . . . . . . . . . . . . 116 4.2. Logrank-type tests for homogeneity of related k > 2 samples . . . . . . . . . . . . . . . . . . . . . 119 4.3. Homogeneity tests for related samplesagainst crossing marginalsurvivalfunctions alternatives . . . . . . . . . . . . . . . . . . . . . . 122 4.3.1. Bibliographicnotes . . . . . . . . . . . . . . . . 124 4.4. Exercises . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5. Answers . . . . . . . . . . . . . . . . . . . . . . . . . 126 Chapter5. Goodness-of-fit for Regression Models 127 5.1. Goodness-of-fit for thesemi-parametric Cox model . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1. TheCox model. . . . . . . . . . . . . . . . . . . 127 5.1.2. Alternativesto theCox model basedon expanded models . . . . . . . . . . . . . . . . . 128 5.1.3. Thedata andthemodified score statistics . 129 5.1.4. Asymptotic distribution of the modified score statistic . . . . . . . . . . . . . . . . . . . 133 5.1.5. Tests . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2. Chi-squaredgoodness-of-fit tests for parametric AFTmodels . . . . . . . . . . . . . . . 142 5.2.1. Accelerated failuretime model . . . . . . . . 142 5.2.2. ParametricAFTmodel . . . . . . . . . . . . . 144 5.2.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.4. Idea of test construction . . . . . . . . . . . . . 145 5.2.5. Asymptotic distribution of Hn andZ . . . . . 146 5.2.6. Test statistics . . . . . . . . . . . . . . . . . . . 151 5.3. Chi-squaredtest for the exponentialAFT model. 153 viii Non-parametricTestsforCensoredData 5.4. Chi-squaredtests for scale-shapeAFT models. 159 5.4.1. Chi-squaredtest for the WeibullAFT model 163 5.4.2. Chi-squaredtest for the lognormalAFT model . . . . . . . . . . . . . . . . . . . . . . . . 166 5.4.3. Chi-squaredtest for the loglogisticAFT model . . . . . . . . . . . . . . . . . . . . . . . . 169 5.5. Bibliographicnotes . . . . . . . . . . . . . . . . . . 172 5.6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . 173 5.7. Answers . . . . . . . . . . . . . . . . . . . . . . . . . 174 APPENDICES. . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Appendix A. Maximum Likelihood Method for Censored Samples. . . . . . . . . . . . . . . . . . . . . 179 A.1.MLestimators: rightcensoring . . . . . . . . . 179 A.2. ML estimators: left truncation. . . . . . . . . . 181 A.3.ML estimators: left truncation andright censoring . . . . . . . . . . . . . . . . . . . . . . . 182 A.4.Consistency andasymptoticnormality of the ML estimators . . . . . . . . . . . . . . . . . . . . 186 A.5.ParametricML estimation for survival regression models . . . . . . . . . . . . . . . . . . 187 Appendix B. Notions from the Theory of Stochastic Processes . . . . . . . . . . . . . . . . . . 191 B.1. Stochastic process. . . . . . . . . . . . . . . . . . 191 B.2. Countingprocess . . . . . . . . . . . . . . . . . . 193 B.3. Martingaleandlocal martingale. . . . . . . . . 194 B.4. Stochastic integral . . . . . . . . . . . . . . . . . 195 B.5. Predictable process andDoob–Meyer decomposition . . . . . . . . . . . . . . . . . . . . 197 B.6. Predictable variationandpredictable covariation . . . . . . . . . . . . . . . . . . . . . . 198 B.7. Stochastic integralswithrespect to martingales. . . . . . . . . . . . . . . . . . . . . . 204 B.8. Central limittheorem for martingales . . . . . 207 TableofContents ix Appendix C. Semi-parametric Estimation using the Cox Model . . . . . . . . . . . . . . . . . 211 C.1. Partiallikelihood . . . . . . . . . . . . . . . . . . 211 C.2. Asymptotic properties of estimators . . . . . . 213 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Preface Thisbook deals with testing hypotheses in non-parametric models. A statistical model is non-parametric if it cannot be written in terms of finite-dimensional parameters. This book is a continuation of our book “Non-parametric Tests for Complete Data” [BAG 10], and it gives generalizations to the case of censored data. The basic notions of hypotheses testing covered in [BAG 10] and many other books are not covered here. Testsfromcensored dataaremostlyconsidered inbookson survival analysis and reliability, such as the monographs by Kalbfleisch and Prentice [KAL 89], Fleming and Harrington [FLE 91], Andersen et al. [AND 93], Lawless [LAW 02], Bagdonavicˇius and Nikulin [BAG 02], Meeker and Escobar [MEE 98],Klein andMoeschberger [KLE 03],Kleinbaumand Klein[KLE 05],andMartinussenandScheike [MAR 06]. Inthefirstchapter,theideaofcensoredandtruncateddata is explained. In Chapter 2, modified chi-squared goodness- of-fit tests for censored and truncated data are given. The application of modified chi-squared tests to censored data is not well described in the statistical literature, so we have described such test statistics for the most-used families of probability distributions. Chi-squared tests for parametric xii Non-parametricTestsforCensoredData accelerated failure time regression models, which are widely applied in reliability, accelerated life testing and survival analysis,are given in Chapter 5. These tests may be used not only for censored data but also for complete data. Goodness- of-fit tests for semi-parametric proportional hazards or Cox models aregiven inChapter 5. Homogeneity tests for independent censored samples are given in Chapter 3. We describe classical logrank tests, the original tests directed against alternatives with possible crossings of cumulative distribution functions. Homogeneity testsfordependentcensoredsamplesareonlytouchedonvery slightly in classical books on survival analysis. In Chapter 4, we give generalizations of logrank tests to the case of dependent samples,andalsotests whicharepowerful against crossing marginaldistributionfunctionsalternatives. Any given test is described in the following way: 1) a hypothesis is formulated; 2) the idea of test construction is given; 3) a statistic on which a test is based is given; 4) the asymptotic distribution of the test statistic is found; 5) a test isformulated; 6) practical examples of application of the tests are given; and 7) at the end of each chapter exercises with answersare given. The basic facts on probability, stochastic processes and survivalanalysisusedin thebook are givenin appendices. Anyone who applies non-parametric methods of mathematical statistics, or who wants to know the ideas behind and mathematical substantiations of the tests, can use this book. If the application of non-parametric tests in reliability and survival analysis is of interest then this book could be the basis of a one-semester course for graduate students.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.