ebook img

Nonparametric system identification PDF

402 Pages·2008·2.557 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonparametric system identification

P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 This page intentionally left blank P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 NonparametricSystemIdentification Presenting a thorough overview of the theoretical foundations of nonparametric sys- tems identification for nonlinear block-oriented systems, Włodzimierz Greblicki and Mirosław Pawlak show that nonparametric regression can be successfully applied to systemidentification,andtheyhighlightwhatyoucanachieveindoingso. Startingwiththebasicideasbehind nonparametric methods, variousalgorithmsfor nonlinearblock-orientedsystemsofcascadeandparallelformsarediscussedindetail. Emphasisisplacedonthemostpopularsystems,HammersteinandWiener,whichhave applicationsinengineering,biology,andfinancialmodeling. Algorithmsusingtrigonometric,Legendre,Laguerre,andHermiteseriesareinvesti- gated,andthekernelalgorithm,itssemirecursiveversions,andfullyrecursivemodifica- tionsarecovered.Thetheoriesofmodernnonparametricregression,approximation,and orthogonalexpansionsarealsoprovided,asarenewapproachestosystemidentification. Theauthorsshowhowtoidentifynonlinearsubsystemssothattheircharacteristicscan beobtained even whenlittleinformationexists,whichisofparticular significance for practical application. Detailed information about all the tools used is provided in the appendices. Thisbookisaimedatresearchersandpractitionersinsystemstheory,signalprocess- ing,andcommunications.Itwillalsoappealtoresearchersinfieldssuchasmechanics, economics,andbiology,whereexperimentaldataareusedtoobtainmodelsofsystems. WłodzimierzGreblickiisaprofessorattheInstituteofComputerEngineering,Control, andRoboticsattheWrocławUniversityofTechnology,Poland. MirosławPawlakisaprofessorintheDepartmentofElectricalandComputerEngineer- ingattheUniversityofManitoba,Canada.HewasawardedhisPh.D.fromtheWrocław UniversityofTechnology,Poland. Both authors have published extensively over the years in the area of nonparametric theoryandapplications. P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 Nonparametric System Identification WŁODZIMIERZ GREBLICKI WrocławUniversityofTechnology MIROSŁAW PAWLAK UniversityofManitoba,Canada CAMBRIDGEUNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521868044 © Cambridge University Press 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-40982-0 eBook (NetLibrary) ISBN-13 978-0-521-86804-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 Contents Preface pageix 1 Introduction 1 2 Discrete-timeHammersteinsystems 3 2.1 Thesystem 3 2.2 Nonlinearsubsystem 4 2.3 Dynamicsubsystemidentification 8 2.4 Bibliographicnotes 9 3 Kernelalgorithms 11 3.1 Motivation 11 3.2 Consistency 13 3.3 Applicablekernels 14 3.4 Convergencerate 16 3.5 Themean-squarederror 21 3.6 Simulationexample 21 3.7 Lemmasandproofs 24 3.8 Bibliographicnotes 29 4 Semirecursivekernelalgorithms 30 4.1 Introduction 30 4.2 Consistencyandconvergencerate 31 4.3 Simulationexample 34 4.4 Proofsandlemmas 35 4.5 Bibliographicnotes 43 5 Recursivekernelalgorithms 44 5.1 Introduction 44 5.2 Relationtostochasticapproximation 44 5.3 Consistencyandconvergencerate 46 5.4 Simulationexample 49 5.5 Auxiliaryresults,lemmas,andproofs 51 5.6 Bibliographicnotes 58 P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 vi Contents 6 Orthogonalseriesalgorithms 59 6.1 Introduction 59 6.2 Fourierseriesestimate 61 6.3 Legendreseriesestimate 64 6.4 Laguerreseriesestimate 66 6.5 Hermiteseriesestimate 68 6.6 Waveletestimate 69 6.7 Localandglobalerrors 70 6.8 Simulationexample 71 6.9 Lemmasandproofs 72 6.10 Bibliographicnotes 78 7 Algorithmswithorderedobservations 80 7.1 Introduction 80 7.2 Kernelestimates 81 7.3 Orthogonalseriesestimates 85 7.4 Lemmasandproofs 89 7.5 Bibliographicnotes 99 8 Continuous-timeHammersteinsystems 101 8.1 Identificationproblem 101 8.2 Kernelalgorithm 103 8.3 Orthogonalseriesalgorithms 106 8.4 Lemmasandproofs 108 8.5 Bibliographicnotes 112 9 Discrete-timeWienersystems 113 9.1 Thesystem 113 9.2 Nonlinearsubsystem 114 9.3 Dynamicsubsystemidentification 119 9.4 Lemmas 121 9.5 Bibliographicnotes 122 10 Kernelandorthogonalseriesalgorithms 123 10.1 Kernelalgorithms 123 10.2 Orthogonalseriesalgorithms 126 10.3 Simulationexample 129 10.4 Lemmasandproofs 130 10.5 Bibliographicnotes 142 11 Continuous-timeWienersystem 143 11.1 Identificationproblem 143 11.2 Nonlinearsubsystem 144 11.3 Dynamicsubsystem 146 11.4 Lemmas 146 11.5 Bibliographicnotes 148 P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 Contents vii 12 Otherblock-orientednonlinearsystems 149 12.1 Series-parallel,block-orientedsystems 149 12.2 Block-orientedsystemswithnonlineardynamics 173 12.3 Concludingremarks 218 12.4 Bibliographicalnotes 220 13 Multivariatenonlinearblock-orientedsystems 222 13.1 Multivariatenonparametricregression 222 13.2 Additivemodelingandregressionanalysis 228 13.3 Multivariatesystems 242 13.4 Concludingremarks 248 13.5 Bibliographicnotes 248 14 Semiparametricidentification 250 14.1 Introduction 250 14.2 Semiparametricmodels 252 14.3 Statisticalinferenceforsemiparametricmodels 255 14.4 StatisticalinferenceforsemiparametricWienermodels 264 14.5 StatisticalinferenceforsemiparametricHammersteinmodels 286 14.6 Statisticalinferenceforsemiparametricparallelmodels 287 14.7 Directestimatorsforsemiparametricsystems 290 14.8 Concludingremarks 309 14.9 Auxiliaryresults,lemmas,andproofs 310 14.10 Bibliographicalnotes 316 A Convolutionandkernelfunctions 319 A.1 Introduction 319 A.2 Convergence 320 A.3 Applicationstoprobability 328 A.4 Lemmas 329 B Orthogonalfunctions 331 B.1 Introduction 331 B.2 Fourierseries 333 B.3 Legendreseries 340 B.4 Laguerreseries 345 B.5 Hermiteseries 351 B.6 Wavelets 355 C Probabilityandstatistics 359 C.1 Whitenoise 359 C.2 Convergenceofrandomvariables 361 C.3 Stochasticapproximation 364 C.4 Orderstatistics 365 References 371 Index 387 P1:IBE Main CUFX280D/Greblicki 9780521868044 April28,2008 8:11 Tomywife,Helena,andmychildren,Jerzy,Maria,andMagdalena–WG TomyparentsandfamilyandthosewhomIlove–MP

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.