Conference Proceedings of the Society for Experimental Mechanics Series Gaetan Kerschen · M. R. W. Brake Ludovic Renson Editors Nonlinear Structures and Systems, Volume 1 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Gaetan Kerschen • M. R. W. Brake (cid:129) Ludovic Renson Editors Nonlinear Structures and Systems, Volume 1 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 123 Editors GaetanKerschen M.R.W.Brake SpaceStructures&SystemsLab.,BldgB52/3 RiceUniversity UniversityofLiége,Space Houston,TX,USA Liége,Belgium LudovicRenson UniversityofBristol Bristol,UK ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-030-12390-1 ISBN978-3-030-12391-8 (eBook) https://doi.org/10.1007/978-3-030-12391-8 ©SocietyforExperimentalMechanics,Inc.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Nonlinear Structures and Systems represents one of eight volumes of technical papers presented at the 37th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in Orlando, Florida, on January 28–31, 2019. The full proceedings also include volumes on Dynamics of Civil Structures; ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;SpecialTopicsinStructuralDynamics &ExperimentalTechniques;RotatingMachinery,OpticalMethods&ScanningLDVMethods;SensorsandInstrumentation, Aircraft/Aerospace,EnergyHarvesting&DynamicEnvironmentsTesting;andTopicsinModalAnalysis&Testing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics.Nonlinearityisoneoftheseareas. Thevastmajorityofrealengineeringstructuresbehavenonlinearly.Therefore,itisnecessarytoincludenonlineareffects inallthestepsoftheengineeringdesign:intheexperimentalanalysistools(sothatthenonlinearparameterscanbecorrectly identified)andinthemathematicalandnumericalmodelsofthestructure(inordertorunaccuratesimulations).Insodoing, itwillbepossibletocreateamodelrepresentativeoftherealitywhich,oncevalidated,canbeusedforbetterpredictions. Severalnonlinearpapersaddresstheoreticalandnumericalaspectsofnonlineardynamics(coveringrigoroustheoretical formulationsandrobustcomputationalalgorithms)aswellasexperimentaltechniquesandanalysismethods.Therearealso papersdedicatedtononlinearityinpracticewherereal-lifeexamplesofnonlinearstructuresarediscussed. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Liége,Belgium G.Kerschen Houston,TX M.R.W.Brake Bristol,UK LudovicRenson v Contents 1 NonsmoothModalAnalysisofaNon-internallyResonantFiniteBarSubjecttoaUnilateralContact Constraint ................................................................................................................ 1 CarlosYoongandMathiasLegrand 2 ANewIwan/PalmovImplementationforFastSimulationandSystemIdentification........................... 11 DrithiShettyandMatthewS.Allen 3 AnalysisofTransientVibrationsforEstimatingBoltedJointTightness.......................................... 21 M.Brøns,J.J.Thomsen,S.M.Sah,D.Tcherniak,andA.Fidlin 4 SpiderConfigurationsforModelswithDiscreteIwanElements................................................... 25 AabhasSingh,MitchellWall,MatthewS.Allen,andRobertJ.Kuether 5 PredictingS4BeamJointNonlinearityUsingQuasi-StaticModalAnalysis...................................... 39 MitchellWall,MatthewS.Allen,andImanZare 6 TheBestLinearApproximationofMIMOSystems:FirstResultsonSimplifiedNonlinearityAssessment.. 53 PéterZoltánCsurcsia,BartPeeters,andJohanSchoukens 7 ForcedResponseofNonlinearSystemsUnderCombinedHarmonicandRandomExcitation ................ 65 AlwinFörster,LarsPanning-vonScheidt,andJörgWallaschek 8 GerrymanderingforInterfaces:ModelingtheMechanicsofJointedStructures................................ 81 T.Dreher,NidishNarayanaaBalaji,J.Groß,MatthewR.W.Brake,andM.Krack 9 AnAnalysisoftheGimballedHorizontalPendulumSystemforUseasaRotaryVibrationalEnergy Harvester................................................................................................................. 87 D.Sequeira,J.Little,andB.P.Mann 10 OntheDynamicResponseofFlow-InducedVibrationofNonlinearStructures................................. 91 BanafshehSeyed-Aghazadeh,HamedSamandari,andRezaAbrishamBaf 11 PotentialandLimitationofaNonlinearModalTestingMethodforFriction-DampedSystems ............... 95 MarenScheel,TobiasSchulz,andMalteKrack 12 DynamicsofaMagneticallyExcitedRotationalSystem ............................................................ 99 Xue-SheWangandBrianP.Mann 13 ExperimentalNonlinearDynamicsofaPost-buckledCompositeLaminatePlate............................... 103 John I. Ferguson, Stephen M. Spottswood, David A. Ehrhardt, Ricardo A. Perez, Matthew P. Snyder, andMatthewB.Obenchain 14 SimulationofaSelf-ResonantBeam-Slider-SystemConsideringGeometricNonlinearities ................... 115 FlorianMüllerandMalteKrack 15 Reinforcement Learning for Active Damping of Harmonically Excited Pendulum with Highly NonlinearActuator...................................................................................................... 119 JamesD.Turner,LeviH.Manring,andBrianP.Mann vii viii Contents 16 InvestigationofNonlinearDynamicPhenomenaApplyingReal-TimeHybridSimulation..................... 125 MarkusJ.HochrainerandAntonM.Puhwein 17 ExperimentalandNumericalAeroelasticAnalysisofAirfoil-AileronSystemwithNonlinear EnergySink .............................................................................................................. 133 Claudia Fernandez-Escudero, Miguel Gagnon, Eric Laurendeau, Sebastien Prothin, Annie Ross, andGuilhemMichon 18 OntheModalSurrogacyofJointParameterEstimatesinBoltedJoints ......................................... 137 NidishNarayanaaBalajiandMatthewR.W.Brake 19 VehicleEscapeDynamicsonanArbitrarilyCurvedSurface....................................................... 141 LeviH.ManringandBrianP.Mann 20 NonlinearDynamicalAnalysisforCoupledFluid-StructureSystems............................................. 151 Q.Akkaoui,E.Capiez-Lernout,C.Soize,andR.Ohayon 21 ExperimentalNonlinearVibrationAnalysisofaShroudedBladedDiskModelonaRotatingTestRig...... 155 FerhatKaptan,LarsPanning-vonScheidt,andJörgWallaschek 22 TheMeasurementofTangentialContactStiffnessforNonlinearDynamicAnalysis............................ 165 C.W.SchwingshacklandD.Nowell 23 InvestigatingNonlinearityinaBoltedStructureUsingForceAppropriationTechniques...................... 169 BenjaminR.Pacini,DanielR.Roettgen,andDanielP.Rohe 24 TechniquesforNonlinearIdentificationandMaximizingModalResponse ...................................... 173 D.Roettgen,B.R.Pacini,andR.Mayes 25 InfluencesofModalCouplingonExperimentallyExtractedNonlinearModalModels......................... 189 Benjamin J. Moldenhauer, Aabhas Singh, Phil Thoenen, Daniel R. Roettgen, Benjamin R. Pacini, RobertJ.Kuether,andMatthewS.Allen 26 DynamicResponseofaCurvedPlateSubjectedtoaMovingLocalHeatGradient............................. 205 DavidA.Ehrhardt,B.T.Gockel,andT.J.Beberniss 27 ATest-CaseonContinuationMethodsforBladed-DiskVibrationwithContactandFriction................. 209 Z.Saeed,G.Jenovencio,S.Arul,J.Blahoš,A.Sudhakar,L.Pesaresi,J.Yuan,F.ElHaddad,H.Hetzler, andL.Salles 28 DynamicsofGeometrically-NonlinearBeamStructures,Part1:NumericalModeling......................... 213 D.Anastasio,J.Dietrich,J.P.Noël,G.Kerschen,S.Marchesiello,J.Häfele,C.G.Gebhardt,andR.Rolfes 29 DynamicsofGeometrically-NonlinearBeamStructures,Part2:ExperimentalAnalysis ...................... 217 D.Anastasio,J.Dietrich,J.P.Noël,G.Kerschen,S.Marchesiello,J.Häfele,C.G.Gebhardt,andR.Rolfes 30 Constructing Backbone Curves from Free-Decay Vibrations Data in Multi-Degrees of Freedom OscillatorySystems...................................................................................................... 221 MattiaCenedeseandGeorgeHaller 31 Nonlinear3DModelingandVibrationAnalysisofHorizontalDrumTypeWashingMachines ............... 225 CemBaykal,EnderCigeroglu,andYigitYazicioglu 32 ComparisonofLinearandNonlinearModalReductionApproaches............................................. 229 ErhanFerhatoglu,TobiasDreher,EnderCigeroglu,MalteKrack,andH.NevzatÖzgüven 33 ReducedOrderModelingofBoltedJointsinFrequencyDomain ................................................. 235 GokhanKarapistikandEnderCigeroglu 34 ComparisonofANMandPredictor-CorrectorMethodtoContinueSolutionsofHarmonicBalance Equations................................................................................................................. 239 LukasWoiwode,NidishNarayanaaBalaji,JonasKappauf,FabiaTubita,LouisGuillot,ChristopheVergez, BrunoCochelin,AurélienGrolet,andMalteKrack Contents ix 35 APrioriMethodstoAssesstheStrengthofNonlinearitiesforDesignApplications............................. 243 E.Rojas,S.Punla-Green,C.Broadman,MatthewR.W.Brake,B.R.Pacini,R.C.Flicek,D.D.Quinn, C.W.Schwingshackl,andE.Dodgen 36 PredictiveModelingofBoltedAssemblieswithSurfaceIrregularities............................................ 247 Matthew Fronk, Gabriela Guerra, Matthew Southwick, Robert J. Kuether, Adam Brink, Paolo Tiso, andDaneQuinn 37 ANovelComputationalMethodtoCalculateNonlinearNormalModesofComplexStructures.............. 259 HamedSamandariandEnderCigeroglu 38 Experimental-NumericalComparisonofContactNonlinearDynamicsThroughMulti-levelLinear ModeShapes ............................................................................................................. 263 ElvioBonisoli,DomenicoLisitano,andChristianConigliaro 39 DynamicBehaviorandOutputChargeAnalysisofaBistableClamped-EndsEnergyHarvester............. 273 MasoudDerakhshaniandThomasA.Berfield Chapter 1 Nonsmooth Modal Analysis of a Non-internally Resonant Finite Bar Subject to a Unilateral Contact Constraint CarlosYoongandMathiasLegrand Abstract The present contribution describes a numerical technique devoted to the nonsmooth modal analysis (natural frequencies and mode shapes) of a non-internally resonant elastic bar of length L subject to a Robin condition at x = 0 and a frictionless unilateral contact condition at x = L. When contact is ignored, the system of interest exhibits non- commensurate linear natural frequencies, which is a critical feature in this study. The nonsmooth modes of vibration are defined as one-parameter continuous families of nonsmooth periodic orbits satisfying the local equation together with the boundary conditions. In order to find a few of the above families, the unknown displacement is first expressed using the well-known d’Alembert’s solution incorporating the Robin boundary condition at x = 0. The unilateral contact constraint atx = LisreducedtoaconditionalswitchbetweenNeumann(opengap)andDirichlet(closedgap)boundaryconditions. Finally,T-periodicityisenforced.Itisalsoassumedthatonlyonecontactswitchoccurseveryperiod.Theabovesystemof equationsisnumericallysolvedforthroughasimultaneousdiscretizationofthespaceandtimedomains,whichyieldsasetof equationsandinequationsintermsofdiscretedisplacementsandvelocities.Theproposedapproachisnon-dispersive,non- dissipativeandaccuratelycapturesthepropagationofwaveswithdiscontinuousfronts,whichisessentialforthecomputation ofperiodicmotionsinthisstudy.Resultsindicatethatincontrasttoitslinearcounterpart(barwithoutcontactconstraints) where modal motions are sinusoidal functions “uncoupled” in space and time, the system of interest features nonsmooth periodic displacements that are intricate piecewise sinusoidal functions in space and time. Moreover, the corresponding frequency-energy“nonlinear”spectrumshowsbackbonecurvesofthehardeningtype.Itisalsoshownthatnonsmoothmodal analysis is capable of efficiently predicting vibratory resonances when the system is periodically forced. The pre-stressed andinitiallygrazingbarconfigurationsarealsobrieflydiscussed. Keywords Nonsmoothsystems · Modalanalysis · Internalresonance · Unilateralcontactconstraints · Waveequation 1.1 Introduction The concept of linear modes (natural frequencies and mode shapes) is a widely studied subject in the field of structural dynamics [7]. A possible extension of this notion to nonlinear conservative systems sees a mode of vibration as a one- parameter continuous family of periodic orbits displaying similar qualitative features [5]. In the phase space, nonlinear modesemergeasinvariantsurfacesofperiodictrajectories,referredtoasinvariantmanifolds[10],whereinvariantimplies that the motion initiated on the manifold stays on it as time unfolds. To some extent, nonlinear modal analysis can be employed for predicting vibratory resonances, computing the nonlinear spectra of vibration or performing model-order reduction. Techniques traditionally employed for nonlinear modal analysis require a certain degree of smoothness in the nonlinearities[11]andthusfailforsystemswithnonsmoothnonlinearitiessuchasunilateralcontactconstraints.Certainly,an accuratecharacterizationofthevibratoryresponseofthesesystemsisessentialtoachievingenhancedandsaferengineering applications [12]. Modal analysis of nonsmooth mechanical systems, also called nonsmooth modal analysis, has been recentlyproposedforafiniteelasticbaroflengthLsubjecttoaDirichletboundaryconditionatx =0andaunilateralcontact constraintatx =L[13].Thissystemsatisfiesacompleteinternalresonancecondition,i.e.alllinearnaturalfrequenciesare commensuratewiththefirstone,whichhasdrasticconsequencesonthenonlinearmodalresponse.Despitethesimplicityof thesystem,thecomputednonsmoothmodes(NSMs)indicatehighlyintricatevibratorybehaviour.Correspondingperiodic displacements were observed to be unseparated piecewise linear functions of space and time, as opposed to their linear counterpartswhicharesinusoidalfunctionsseparatedinspaceandtime.Moreover,forcertainNSMssuchinternalresonance C.Yoong((cid:2))·M.Legrand DepartmentofMechanicalEngineering,McGillUniversity,Montréal,QC,Canada e-mail:[email protected] ©SocietyforExperimentalMechanics,Inc.2020 1 G.Kerschenetal.(eds.),NonlinearStructuresandSystems,Volume1,ConferenceProceedingsoftheSocietyforExperimental MechanicsSeries,https://doi.org/10.1007/978-3-030-12391-8_1