ebook img

Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability PDF

553 Pages·2012·14.273 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability

NONLINEAR SOLID MECHANICS Thisbookcoverssolidmechanicsfornonlinearelasticandelastoplas- tic materials, describing the behavior of ductile materials subjected to extreme mechanical loading and their eventual failure. The book highlights constitutive features to describe the behavior of frictional materialssuchasgeologicalmedia.Onthebasisofthistheory,includ- inglargestrainandinelasticbehaviors,bifurcationandinstabilityare developed with a special focus on the modeling of the emergence of localinstabilitiessuchasshearbandformationandflutterofacontin- uum. The former is regarded as a precursor of fracture, whereas the latteristypicalofgranularmaterials.Thetreatmentiscomplemented withqualitativeexperiments,illustrationsfromeverydaylifeandsimple examplestakenfromstructuralmechanics. Davide Bigoni is a professor in the faculty of engineering at the University of Trento, where he has been head of the Department of Mechanical and Structural Engineering. He was honored as a EuromechFellowoftheEuropeanMechanicsSociety.Heisco-editor oftheJournalofMechanicsofMaterialsandStructures(aninternational journalfoundedbyC.R.Steele)andisassociateeditorofMechanics ResearchCommunications. Nonlinear Solid Mechanics BIFURCATION THEORY AND MATERIAL INSTABILITY Davide Bigoni UniversityofTrento CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9781107025417 ©DavideBigoni2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Bigoni,Davide,1959– Nonlinearsolidmechanics:bifurcationtheoryandmaterialinstability/DavideBigoni. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-107-02541-7 1. Nonlinearmechanics. 2. Materials–Mechanicalproperties. 3. Elasticanalysis (Engineering) 4. Bifurcationtheory. I. Title. TA405.B4983 2012 (cid:2) 620.11292–dc23 2012013657 ISBN978-1-107-02541-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLs forexternalorthird-partyInternetWebsitesreferredtointhispublicationanddoesnot guaranteethatanycontentonsuchWebsitesis,orwillremain,accurateorappropriate. Contents Preface page xiii ForewordbyGiulioMaier xv 1 Introduction 1 1.1 Bifurcationandinstabilitytoexplainpatternformation 2 1.2 Bifurcationsinelasticity:Theelasticcylinder 6 1.3 Bifurcationsinelastoplasticity:TheShanleymodel 8 1.4 Shearbandsandstrainlocalization 12 1.5 Bifurcation,softeningandsizeeffectastheresponseofastructure 17 1.6 Chainswithsofteningelements 22 1.7 Shearbandsaturationandmultipleshearbanding 31 1.8 Brittleandquasi-brittlematerials 33 1.9 Coulombfrictionandnon-associativeplasticity 37 1.10 Non-associativeflowrulepromotesmaterialinstabilities 41 1.11 Aperturbativeapproachtomaterialinstability 42 1.12 Asummary 48 1.13 Exercises,detailsandcuriosities 52 1.13.1 Exercise:TheEulerelasticaandthedoublesupportedbeam subjecttocompressiveload 52 1.13.2 Exercise:Bifurcationofastructuresubjecttotensile deadload 69 1.13.3 Exercise:Degreesoffreedomandnumberofcriticalloads ofelasticstructures 70 1.13.4 Exercise:Astructurewithatrivialconfigurationunstable atacertainload,returningstableathigherload 73 1.13.5 Exercise:Flutteranddivergenceinstabilityinanelastic structureinducedbyCoulombfriction 80 2 Elementsoftensoralgebraandanalysis 91 2.1 Componentsontoanorthonormalbasis 92 2.2 Dyads 93 2.3 Second-ordertensors 95 2.4 Rotationtensors 98 vii viii Contents 2.5 Positivedefinitesecond-ordertensors,eigenvalues andeigenvectors 99 2.6 Reciprocalbases:Covariantandcontravariantcomponents 101 2.7 Spectralrepresentationtheorem 102 2.8 Squarerootofatensor 103 2.9 Polardecompositiontheorem 104 2.10 Oncoaxialitybetweensecond-ordertensors 104 2.11 Fourth-ordertensors 105 2.12 Onthemetricinducedbysemi–positivedefinitetensors 106 2.13 TheMacaulaybracketoperator 107 2.14 Differentialcalculusfortensors 107 2.15 Gradient 108 2.16 Divergence 110 2.17 Cylindricalcoordinates 111 2.18 Divergencetheorem 113 2.19 Convexityandquasi-convexity 114 2.20 Examplesanddetails 116 2.20.1 Example:Jordannormalformofadefectivetensorwitha doubleeigenvalue 116 2.20.2 Example:Jordannormalformofadefectivetensorwitha tripleeigenvalue 117 2.20.3 Example:Inverseoftheacoustictensorofisotropic elasticity 117 2.20.4 Example:Inverseoftheacoustictensorforaparticular classofanisotropicelasticity 118 2.20.5 Example:Arepresentationforthesquarerootofatensor 118 2.20.6 Proofofapropertyofthescalarproductbetweentwo symmetrictensors 119 2.20.7 Example:Inverseandpositivedefinitenessofthe fourth-ordertensordefininglinearisotropicelasticity 120 2.20.8 Example:Inverseandpositivedefinitenessofa fourth-ordertensordefiningaspecialanisotropiclinear elasticity 121 2.20.9 Example:Inverseoftheelastoplasticfourth-ordertangent tensor 121 2.20.10Example:Spectralrepresentationoftheelastoplastic fourth-ordertangenttensor 122 2.20.11Example:Strictconvexityofthestrainenergydefining linearisotropicelasticity 124 3 Solidmechanicsatfinitestrains 125 3.1 Kinematics 125 3.1.1 Transformationoforientedlineelements 127 3.1.2 Transformationoforientedareaelements 129 3.1.3 Transformationofvolumeelements 129 Contents ix 3.1.4 Angularchanges 130 3.1.5 Measuresofstrain 131 3.2 Onmaterialandspatialstrainmeasures 135 3.2.1 Rigid-bodyrotationofthereferenceconfiguration 135 3.2.2 Rigid-bodyrotationofthecurrentconfiguration 136 3.3 Motionofadeformablebody 137 3.4 Massconservation 141 3.5 Stress,dynamicforces 142 3.6 Powerexpendedandwork-conjugatestress/strainmeasures 146 3.7 Changesoffieldsforasuperimposedrigid-bodymotion 150 4 Isotropicnon-linearhyperelasticity 152 4.1 Isotropiccompressiblehyperelasticmaterial 153 4.1.1 Kirchhoff–SaintVenantmaterial 154 4.2 Incompressibleisotropicelasticity 155 4.2.1 Mooney-Rivlinelasticity 156 4.2.2 Neo-Hookeanelasticity 158 4.2.3 J -Deformationtheoryofplasticity 158 2 4.2.4 TheGBGmodel 159 5 Solutionsofsimpleproblemsinfinitelydeformednon-linear elasticsolids 162 5.1 Uniaxialplanestraintensionandcompressionofan incompressibleelasticblock 162 5.2 UniaxialplanestraintensionandcompressionofKirchhoff–Saint Venantmaterial 168 5.3 Uniaxialtensionandcompressionofanincompressible elasticcylinder 170 5.4 Simpleshearofanelasticblock 173 5.5 Finitebendingofanincompressibleelasticblock 179 6 Constitutiveequationsandanisotropicelasticity 188 6.1 Constitutiveequations:Generalconcepts 188 6.1.1 Changeinobserverandrelatedprincipleofinvarianceof materialresponse 189 6.1.2 Indifferencewithrespecttorigid-bodyrotationofthe referenceconfiguration 192 6.1.3 Materialsymmetries 195 6.1.4 Cauchyelasticity 198 6.1.5 Greenelasticorhyperelasticmaterials 201 6.1.6 Incompressiblehyperelasticityandconstrainedmaterials 203 6.2 Rateandincrementalelasticconstitutiveequations 207 6.2.1 Elasticlawsinincrementalandrateform 207 6.2.2 RelativeLagrangeandescription 210 6.2.3 Hypoelasticity 220

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.