EURO Advanced Tutorials on Operational Research Series Editors: M. Grazia Speranza · José Fernando Oliveira Giancarlo Bigi Marco Castellani Massimo Pappalardo Mauro Passacantando Nonlinear Programming Techniques for Equilibria EURO Advanced Tutorials on Operational Research Serieseditors M.GraziaSperanza,Brescia,Italy JoséFernandoOliveira,Porto,Portugal Moreinformationaboutthisseriesathttp://www.springer.com/series/13840 Giancarlo Bigi (cid:129) Marco Castellani (cid:129) Massimo Pappalardo (cid:129) Mauro Passacantando Nonlinear Programming Techniques for Equilibria 123 GiancarloBigi MarcoCastellani DepartmentofComputerScience DepartmentofInformationEngineering, UniversityofPisa ComputerScienceandMathematics Pisa,Italy UniversityofL’Aquila L’Aquila,Italy MassimoPappalardo MauroPassacantando DepartmentofComputerScience DepartmentofComputerScience UniversityofPisa UniversityofPisa Pisa,Italy Pisa,Italy ISSN2364-687X ISSN2364-6888 (electronic) EUROAdvancedTutorialsonOperationalResearch ISBN978-3-030-00204-6 ISBN978-3-030-00205-3 (eBook) https://doi.org/10.1007/978-3-030-00205-3 LibraryofCongressControlNumber:2018956154 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In science, the term “equilibrium” has been widely used in physics, chemistry, biology,engineering,andeconomics,amongothers,withindifferentframeworks.It generallyreferstoconditionsorstatesofasysteminwhichallcompetinginfluences are balanced. For instance, in physics the mechanical equilibrium is the state in whichthe sumofallthe forcesandtorquesoneachparticleofthesystem iszero, while a fluid is said to be in hydrostatic equilibrium when it is at rest, or when the flow velocity at each point is constant over time. In chemistry, the dynamic equilibrium is the state of a reversible reaction where the forward reaction rate is equal to the reverse one. In biology, the genetic equilibrium denotes a situation in whicha genotypedoesnotevolveanymore in a populationfromgenerationto generation.Inengineering,thetrafficequilibriumistheexpectedsteadydistribution oftrafficoverpublicroadsorovercomputerandtelecommunicationnetworks.Even more, the well-known equilibrium theory is a fundamental branch of economics studyingthe dynamicsofsupply,demand,andpricesin an economywithin either one(partialequilibrium)orseveral(generalequilibrium)markets:thebasicmodel of supply and demand is an example of the former, while the Arrow–Debreuand Radnermodelsareexamplesofthelatter. Actually,theterm“equilibrium”hasalsoalwaysbeenveryrelevantinmathemat- ics, particularly in dynamical systems, partial differential equations, and calculus of variations. After the breakthrough of game theory and the concept of Nash equilibrium, the term has been used in mathematics in much larger contexts involvingrelevantaspects of operationsresearch and mathematicalprogramming. Indeed, many “equilibrium problems”, including some of them mentioned above, can be modeled in this framework through different mathematical models such asoptimization,complementarity,variationalinequalities,multiobjectiveoptimiza- tion, noncooperative games, and inverse optimization, among others. All these mathematical models share an underlying common structure that allows us to convenientlyformulatetheminauniqueformat. Thisbookfocusesontheanalysisofthisunifyingformatforequilibriumprob- lems. Since it allows describinga large numberof applications,many researchers devoted their efforts to study it, and nowadays, many results and algorithms are v vi Preface available: as optimization fits in this format, nonlinear programming techniques haveoftenbeenthekeytooloftheirwork.Thebookaimsataddressinginparticular twocoreissuessuchastheexistenceandcomputationofequilibria.Thefirstchapter illustratesasampleofapplications,thesecondaddressesthemaintheoreticalissues, andthethirdintroducesthemainalgorithmsavailableforcomputingequilibria.The final chapter is devoted to quasi-equilibria, a more general format that is needed to cover more complex applications having additional features such as shared resources in noncooperativegames. Finally, basic material on sets, functions, and multivalued maps that are exploited throughout the book are summarized in the appendix. To make the book as readable as possible, examples and applications havebeenincluded.Wehopethatthisbookmayserveasabasisforasecond-level academic course or a specialized course in a Ph.D. programand stimulate further interestinequilibriumproblems. Pisa,Italy GiancarloBigi L’Aquila,Italy MarcoCastellani Pisa,Italy MassimoPappalardo Pisa,Italy MauroPassacantando July2018 Contents 1 EquilibriumModelsandApplications..................................... 1 1.1 ObstacleProblem....................................................... 1 1.2 PowerControlinWirelessCommunications.......................... 3 1.3 TrafficNetwork......................................................... 4 1.4 PortfolioSelection...................................................... 6 1.5 OptimalProductionUnderRestrictedResources..................... 7 1.6 Input-OutputAnalysisinanEconomy................................ 8 1.7 QualityControlinProductionSystems ............................... 10 1.8 KyFanInequalities:AUnifyingEquilibriumModel................. 11 1.9 NotesandReferences .................................................. 16 2 TheoryforEquilibria........................................................ 17 2.1 ConvexityandMonotonicity........................................... 17 2.2 EquivalentReformulations............................................. 24 2.3 Existence................................................................ 31 2.4 Stability................................................................. 39 2.5 ErrorBounds............................................................ 43 2.6 NotesandReferences .................................................. 47 3 AlgorithmsforEquilibria................................................... 51 3.1 Fixed-PointandExtragradientMethods............................... 51 3.2 DescentMethods....................................................... 59 3.3 RegularizationMethods................................................ 65 3.4 ComputationalIssues................................................... 68 3.5 NotesandReferences .................................................. 69 4 Quasi-Equilibria ............................................................. 73 4.1 Applications ............................................................ 73 4.2 Theory................................................................... 75 4.3 Algorithms.............................................................. 80 4.4 NotesandReferences .................................................. 96 vii viii Contents A MathematicalBackground.................................................. 99 A.1 TopologicalConcepts .................................................. 99 A.2 Functions................................................................ 103 A.3 MultivaluedMaps ...................................................... 108 References......................................................................... 113 Index............................................................................... 119 Chapter 1 Equilibrium Models and Applications As already mentioned in the preface, the term “equilibrium” is widespread in science in the study of different phenomena. In this chapter a small selection of equilibriumproblemsfromdifferentareasisgiven,eachleadingtoadifferentkind of mathematical model. The equilibrium position of an elastic string in presence of an obstacle, which is depicted in Sect.1.1, coincides with the solution of a complementarity problem, the Nash equilibrium fits in well to model a power controlmulti-agentsystem described in Sect.1.2, the steady distribution of traffic overanetworkisrepresentedbyavariationalinequalityinSect.1.3,theMarkowitz portfolio theory is viewed as a multiobjective problem in Sect.1.4, the shadow pricetheoryisviewedasasaddlepointproblemforthenonlinearcaseinSect.1.5, the solution of the input-output model given in Sect.1.6 is a fixed point and the qualitycontrolprobleminaproductionsystemillustratedinSect.1.7isaninverse optimization problem. Finally, the last section is devoted to show that all these mathematicalmodels,whichareapparentlydifferent,haveacommonstructurethat leadstoaunifiedformat:theKyFaninequalityorthe“equilibriumproblem”using the “abstract” name introduced by Blum, Muu and Oettli to stress this unifying feature. 1.1 ObstacleProblem Consideranelasticone-dimensionalstringboundedonaplane.Theendpointsofthe stringarekeptfixed,anditsnaturalpositionisastraightlinebetweentheendpoints. What shape does the string take at the equilibrium if an obstacle is inserted in between the two endpoints?The string stretches over the obstacle: it sticks to the obstacle somewhere while it remains stretched as a straight line elsewhere (see Fig.1.1). ©SpringerNatureSwitzerlandAG2019 1 G.Bigietal.,NonlinearProgrammingTechniquesforEquilibria,EUROAdvanced TutorialsonOperationalResearch,https://doi.org/10.1007/978-3-030-00205-3_1