Nonelliptic Partial Differential Equations Developments in Mathematics VOLUME 22 SeriesEditors: KrishnaswamiAlladi,Universityof Florida Hershel M.Farkas,HebrewUniversityofJerusalem Robert Guralnick,UniversityofSouthernCalifornia Forfurthervolumes: http://www.springer.com/series/5834 David S. Tartakoff Nonelliptic Partial Differential Equations Analytic Hypoellipticity and the Courage to Localize High Powers of T 123 DavidS.Tartakoff SMorganSt851 60607-7042ChicagoIllinois USA [email protected] ISSN1389-2177 ISBN978-1-4419-9812-5 e-ISBN978-1-4419-9813-2 DOI10.1007/978-1-4419-9813-2 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2011931713 (cid:2)c SpringerScience+BusinessMedia,LLC2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 WhatThisBookIsandIsNot ............................................ 1 2 BriefIntroduction .......................................................... 5 3 OverviewofProofs ......................................................... 7 3.1 AFewPreliminaryDefinitions..................................... 7 3.2 EllipticEquationsandBoundaryValueProblems................. 8 3.3 TheSimplestSubellipticCase ..................................... 9 3.4 SubellipticEstimates ............................................... 11 3.5 LocalC1Regularity............................................... 13 3.6 ProvingC1Regularity............................................. 14 3.7 GevreyRegularity................................................... 15 3.8 EllipticOperators................................................... 16 3.8.1 SymmetrizationoftheEstimates......................... 16 3.8.2 ProofviaN theNormEstimate ............................. 19 3.9 NonellipticOperators............................................... 20 3.9.1 TheBaouendi–GoulaouicExample;Sharpness.......... 20 3.10 TheAnalyticityProblemandItsSolution ......................... 21 3.10.1 ObstructionstoProvingAnalyticity...................... 21 3.10.2 WhytheMostNaiveApproachFails..................... 21 3.10.3 TheFlavorofOurMethods............................... 23 3.10.4 TheConstructionof.Tp/ ................................ 25 ' 3.11 TheRoleofStrictness .............................................. 28 3.12 Treves’Conjecture.................................................. 28 3.12.1 AParticularCase.......................................... 29 3.13 CounterexamplesintheComplexDomain ........................ 30 3.14 AHEforD2 Cx2kD2 (No.Tp/ Needed!)..................... 31 x1 1 x2 ' v vi Contents 4 FullProoffortheHeisenbergGroup .................................... 33 4.1 TheModelOperator................................................ 33 4.1.1 T Derivatives.............................................. 34 4.1.2 Z Derivatives.............................................. 35 4.2 TheEndoftheProoffortheHeisenbergGroup................... 37 5 Coefficients ................................................................. 41 5.1 HowSpecialIstheHeisenbergModel?............................ 41 5.2 RigidCoefficients:T Derivatives.................................. 42 5.3 OurEstimatesandHowWeUseThem............................ 44 5.4 PureZandMixedDerivatives..................................... 46 5.5 FormalObservations................................................ 49 5.6 NonrigidCoefficients............................................... 57 6 PseudodifferentialProblems .............................................. 65 6.1 GeneralizationtoPseudodifferentialOperators ................... 65 6.2 TheMicrolocal.Tp/ ............................................ 67 ' (cid:2) 6.3 BracketswithCoefficients.......................................... 68 7 GeneralSumsofSquaresofRealVectorFields ........................ 71 7.1 ALittleHistory ..................................................... 71 7.2 ProofforaSumofMonomials..................................... 72 7.3 PartialRegularity ................................................... 73 7.4 OtherSpecialCases,LeadingtoaGeneralConjecture........... 78 7.5 TheGeneralConjectureandResult................................ 79 8 The@-NeumannProblemandtheBoundaryLaplacian onStrictlyPseudoconvexDomains ....................................... 81 8.1 StatementoftheTheorems......................................... 82 8.2 NotationandaPrioriEstimates .................................... 83 8.2.1 MaximalEstimate......................................... 84 8.3 TheHeatEquationfor(cid:2) .......................................... 88 b 8.4 WeaklyPseudoconvexDomains ................................... 89 8.5 GlobalRegularity................................................... 89 9 SymmetricDegeneracies .................................................. 91 9.1 WeaklyPseudoconvexDomains ................................... 91 10 DetailsofthePreviousChapter .......................................... 99 10.1 StatementoftheTheorems......................................... 99 10.2 TheVectorFieldM andtheLocalization ......................... 100 10.3 BehavioroftheLocalizedOperators............................... 108 Contents vii 10.4 ProofofTheorem10.1.............................................. 114 10.5 ProofofTheorem10.2.............................................. 118 10.6 EndoftheProofofTheorem10.2 ................................. 122 11 NonsymplecticStrataandGermAnalyticHypoellipticity ............. 131 11.1 ProofforHanges’Operator(11.1)................................. 132 11.2 AMoreComplicatedExample..................................... 134 11.3 TheGeneralScheme................................................ 135 11.4 TheVectorFieldM andtheLocalization ......................... 136 11.5 TheCommutationRelationsforRp ............................... 137 ' 11.6 TheBracketŒX ;Rp(cid:3)............................................... 137 2 ' 11.7 TheBracketŒX ;Rp(cid:3)............................................... 138 1 ' 11.8 ProofofTheorem11.1.............................................. 144 11.9 NonclosedBicharacteristicswithNontrivialLimitSet ........... 150 12 OperatorsofKohnTypeThatLoseDerivatives ........................ 153 12.1 ObservationsandSimplifications .................................. 154 12.2 TheLocalizationofHighPowersofT ............................ 154 12.3 TheRecurrence ..................................................... 155 12.4 ConclusionoftheProof ............................................ 156 12.5 GevreyRegularityforKohn–OleinikOperators................... 157 13 NonlinearProblems ........................................................ 159 13.1 GlobalRegularity................................................... 159 13.2 SomeNotationandDefinitions..................................... 160 13.3 MaximalEstimates.................................................. 162 13.4 HighPowersoftheVectorFieldT ................................ 165 13.5 MixedDerivatives:TheCaseofGlobalX ........................ 171 13.6 LocallyDefinedX ................................................. 172 j 13.7 HighPowersofXINewLocalizingFunctions.................... 174 13.8 TheLocalizingFunctions........................................... 175 13.9 TakingaLocalizingFunctionoutoftheNorm.................... 176 13.10 LocalRegularity.................................................... 179 13.11 Results............................................................... 179 13.12 Proof................................................................. 180 13.13 PassingtoAnotherLocalizingFunction.......................... 184 13.14 ReducingtheOrderbyHalf;theEndoftheProof................ 186 13.15 TheWidthoftheCriticalBand..................................... 187 13.16 TheFaa` diBrunoFormula......................................... 188 14 Treves’Approach .......................................................... 191 15 Appendix .................................................................... 195 15.1 ADiscussionoftheLocalizingFunctions......................... 195 viii Contents 15.2 TheAnalyticalMaterialUsed...................................... 197 15.2.1 SomeFourierAnalysisandSobolevSpaces............. 197 15.2.2 TheHeisenbergGroup.................................... 197 15.2.3 PseudodifferentialOperators ............................. 197 References ........................................................................ 199 Chapter 1 What This Book Is and Is Not The question of high smoothness of solutions to partial differential equations, in particulartheequationsstudiedhereandcalledthe“@-Neumannproblem”andthe complexboundaryLaplacian,lieattheinterfacebetweenrealandcomplexanalysis andhasdeeprepercussionsinboth. TheC1regularityresultswereestablishedin1963byJ.J.Kohn[K1]andshortly afterward by others [KN], [Ho¨1] and only fifteen years later did the local real analytic regularity find resolution, independently by F. Treves [Tr4] and by the presentauthorin[T4],[T5].G. Me´tiviergeneralizedtheresultsin1980following Treves[Me´2], and then in 1983 J. Sjo¨strand [Sj2] used a still differenttechnique, that of the so-called FBI transform, to re-prove these results. These proofs are radicallydifferentfromoneanother:Treves’constructsaparametrixforaso-called Grusˇin operator and then treats the generalcase as a perturbation,mine explicitly and directly localizes a high power of a vector field and then successively and naturallycorrectsthecommutationerrorsthatarriveinusingL2estimates,andthat ofSjo¨strand usesthe powerfulbutsomewhatrigidFBI transform,a clevervariant oftheFouriertransformthatpermitsonetoavoidlocalizationdirectly.Seealsothe workofOkaji[Ok]from1985.WewillcommentonTreves’approachinmoredetail below. It is the main purpose of this book, however,to familiarize the reader with the techniqueandconstructionsthatIhavedeveloped,which,whileutterlyelementary intheiressence,requireacertainamountoftimefortheirexposition,andIfeltthat alongerformat,suchasabook,wouldprovidethematrixforthisnarrative. Allthreemethodsalludedtoabovehavestoodthetestoftime.Theonepresented herenotonlyiselementaryinnature,butalsoseemstobethemostflexibleandopen toperturbations.Anditmaybeapproachedthroughthesimpleexampleofsumsof squaresofrealvectorfieldsofthemostelementary(nontrivial)sort. Andwhilethetechniqueiselementaryinnature—itusesnothingbeyondagood first-yeargraduatecourseinanalysis—itdoesnotreplacethatcourse. D.S.Tartakoff,NonellipticPartialDifferentialEquations:AnalyticHypoellipticity 1 andtheCouragetoLocalizeHighPowersofT,DevelopmentsinMathematics22, DOI10.1007/978-1-4419-9813-2 1,©SpringerScience+BusinessMedia,LLC2011 2 1 WhatThisBookIsandIsNot Thusinordertofacilitatereadabilityforthosewhoknow,orhaveheardof,this technique,I havechosen notto start off with the definitionsof Lebesguemeasure and integration,the Fourier transform,normed vector spaces, Sobolev spaces and the Sobolev embedding theorem, left-invariant vector fields on the Heisenberg group, and some elementary theory of pseudodifferential operators, but have includedakindof“referencesection”intheappendix,whichcontainsthenecessary definitionsandbasicresultstowhichthereadermaywishtoreferfromtimetotime. However,forthosewhowanttoassessrightawaytheirpreparednessforthemain text, here are some of the facts thatare developedfurtherin the Appendix.If you arecomfortablewiththeseresultsandarecontenttoproceedwithoutproofsatthis point,byallmeanscontinuetothenextchapter. • The Fourier transform fO.(cid:4)/ of a function f.x/ is an isometry of L2.Rn/ and takes@f=@x to.1=i/(cid:4) fO: j j • The Sobolev space Hs consists of all functions (tempered distributions) f for which .1Cj(cid:4)j2/s=2fO 2 L2: Thusif s isa nonnegativeinteger,f 2 Hs if and onlyif@˛f=@x˛ 2L2forallmulti-indices˛withj˛j(cid:2)s: • (theSobolevembeddingtheorem)f.x/ iscontinuousiff 2 Hs forsomes > n=2:Itfollowsthatf 2C1,providedf 2Hs 8s: • Distributions on Rn; denoted by D.Rn/; are elements of the topological dual space to C1.Rn/: They may be differentiated and multiplied by smooth func- 0 tions.EverydistributionbelongslocallytosomeHs: • Thevectorfields @ y @ @ x @ j j X D (cid:3) ; Y D C j j @x 2 @t @y 2 @t j j aretheso-calledleft-invariantvectorfieldsontheHeisenberggroup.Theysatisfy ŒX ;Y (cid:3)Dı T; j k j;k ŒX ;X (cid:3)DŒY ;Y (cid:3)DŒX ;T(cid:3)DŒY ;T(cid:3)D0 j k j k j j (WewillusenothingelseabouttheHeisenberggroup;sufficeittosaythatthese vector fields play the same role vis-a`-vis the Heisenberg group (they commute with left translationin the group)that the coordinatepartialderivativesdo vis- a`-vistheusualEuclideangroupstructureinRn:)Theywillprovidethesimplest modelforthevectorfieldswewillstudy. • The simplest pseudodifferentialoperators, as introduced by K.O. Friedrichs in the 1960s, provide the algebraic tool needed to invert many partial differential operators modulo (infinitely, or analytically) smoothing operators. Just as a partialdifferentialoperator X 1 @ P.x;D/D a D˛; D D ; ˛ i @x j˛j(cid:3)m