ebook img

Non-Volatile In-Memory Computing by Spintronics PDF

151 Pages·2017·2.197 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Volatile In-Memory Computing by Spintronics

Non-Volatile In-Memory Computing by Spintronics Hao Yu NanyangTechnologicalUniversity,Singapore Leibin Ni NanyangTechnologicalUniversity,Singapore Yuhao Wang Synopsis,California,USA SYNTHESISLECTURESONEMERGINGENGINEERING TECHNOLOGIES#8 M &C Morgan &cLaypool publishers Copyright©2017byMorgan&Claypool Non-VolatileIn-MemoryComputingbySpintronics HaoYu,LeibinNi,andYuhaoWang www.morganclaypool.com ISBN:9781627052948 paperback ISBN:9781627056441 ebook DOI10.2200/S00736ED1V01Y201609EET008 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONEMERGINGENGINEERINGTECHNOLOGIES Lecture#8 SeriesEditor:KrisIniewski,RedlenTechnologies,Inc. SeriesISSN Print2381-1412 Electronic2381-1439 ABSTRACT Exa-scalecomputingneedstore-examinetheexistinghardwareplatformthatcansupportinten- sivedata-orientedcomputing.Sincethemainbottleneckisfrommemory,weaimtodevelopan energy-efficientin-memorycomputingplatforminthisbook.First,themodelsofspin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronicscouldbeacandidateforfuturedata-orientedcomputingforstorage,logic,andinter- connect. As a result, byutilizing spintronics,in-memory-based computinghas been applied for dataencryptionandmachinelearning.eimplementationsofin-memoryAES,Simoncipher, aswellasinterconnectareexplainedindetails.Inaddition,in-memory-basedmachinelearning andfacerecognitionarealsoillustratedinthisbook. KEYWORDS Spintronics, in-memory computing, non-volatile memory, logic-memory integra- tion,dataencryption,AES,machinelearning,dataanalytics,hardwareaccelerator Contents Preface ............................................................xi 1 Introduction ....................................................... 1 1.1 MemoryWall .....................................................1 1.2 TraditionalSemiconductorMemory ...................................3 1.2.1 Overview ...................................................3 1.2.2 Nano-scaleLimitations........................................9 1.3 Non-volatileSpintronicMemory ....................................13 1.3.1 BasicMagnetizationProcess...................................14 1.3.2 MagnetizationDamping......................................14 1.3.3 Spin-transferTorque.........................................15 1.3.4 MagnetizationDynamics .....................................18 1.3.5 DomainWallPropagation ....................................20 1.4 TraditionalMemoryArchitecture ....................................21 1.5 Non-volatileIn-memoryComputingArchitecture.......................25 1.6 References.......................................................28 2 Non-volatileSpintronicDeviceandCircuit............................. 31 2.1 SPICEFormulationwithNewNano-scaleNVMDevices ................31 2.1.1 TraditionalModifiedNodalAnalysis ............................32 2.1.2 NewMNAwithNon-volatileStateVariables .....................33 2.2 STT-MTJDeviceandModel .......................................35 2.2.1 STT-MTJ .................................................35 2.2.2 STT-RAM ................................................39 2.2.3 TopologicalInsulator ........................................40 2.3 DomainWallDeviceandModel.....................................50 2.3.1 MagnetizationReversal.......................................51 2.3.2 MTJResistance.............................................53 2.3.3 DomainWallPropagation ....................................53 2.3.4 CircularDomainWallNanowire ...............................54 2.4 SpintronicStorage ................................................57 2.4.1 SpintronicMemory..........................................57 2.4.2 SpintronicReadout ..........................................57 2.5 SpintronicLogic..................................................61 2.5.1 XOR .....................................................61 2.5.2 Adder.....................................................63 2.5.3 Multiplier .................................................64 2.5.4 LUT .....................................................64 2.6 SpintronicInterconnect ............................................65 2.6.1 Coding-basedInterconnect....................................65 2.6.2 DomainWall-basedEncoder/Decoder ..........................68 2.6.3 PerformanceEvaluation ......................................72 2.7 References.......................................................74 3 In-memoryDataEncryption ......................................... 81 3.1 In-memoryAdvancedEncryptionStandard ............................81 3.1.1 FundamentalofAES ........................................81 3.1.2 DomainWallNanowire-basedAESComputing...................83 3.1.3 PipelinedAESbyDomainWallNanowire .......................92 3.1.4 PerformanceEvaluation ......................................97 3.2 DomainWall-basedSIMONBlockCipher ...........................102 3.2.1 FundamentalofSIMONBlockCipher .........................103 3.2.2 HardwareStages ...........................................103 3.2.3 RoundCounter ............................................103 3.2.4 ControlSignals ............................................105 3.2.5 KeyExpansion ............................................105 3.2.6 Encryption................................................106 3.2.7 PerformanceEvaluation .....................................106 3.3 References......................................................108 4 In-memoryDataAnalytics.......................................... 111 4.1 In-memoryMachineLearning .....................................111 4.1.1 ExtremeLearningMachine ..................................111 4.1.2 MapReduce-basedMatrixMultiplication .......................112 4.1.3 DomainWall-basedHardwareMapping ........................113 4.1.4 PerformanceEvaluation .....................................116 4.2 In-memoryFaceRecognition ......................................121 4.2.1 Energy-efficientSTT-MRAMwithSpare-representedData........121 4.2.2 QoS-awareAdaptiveCurrentScaling ..........................129 4.2.3 STT-RAMbasedHardwareMapping..........................131 4.2.4 PerformanceEvaluation .....................................135 4.3 References......................................................140 Preface eexistingmemorytechnologieshavecriticalchallengeswhenscalingatnanoscaleduetopro- cessvariation,leakagecurrent,andI/Oaccesslimitations.Recently,therearetworesearchtrends attemptingtoalleviatethememory-wallissuesforfuturebig-datastorageandprocessingsystem. First,theemergingnon-volatilememorytechnologies,suchasspin-transfertorquemem- ory,domainwallnanowire(orracetrack)memory,etc.,haveshownsignificantlyreducedstandby powerandincreasedintegrationdensity,aswellasclose-toDRAM/SRAMaccessspeed.ere- fore,theyareconsideredaspromisingnextgenerationmemoryforbig-dataapplications. Second, due to high data-level parallelism in big-data applications, large number of ap- plicationspecificacceleratorscanbedeployedfordataprocessing.However,theI/Obandwidth limitation will still be the bottleneck in such a memory-logic integration approach. Instead, an in-memorycomputingplatformwillbehighlydesiredwithlessdependenceonI/Os. Inordertoachievelowpowerandhighthroughput(orenergyefficiency)inbig-datacom- puting, one can build an in-memory non-volatile memory (NVM) hardware platform, where boththememoryandcomputingresourcesarebasedonNVMdeviceswithinstant-switch-onas wellastoultra-lowleakagecurrent.Suchanarchitecturecanachievesignificantpowerreduction due to the non-volatility. Moreover, one can develop an NVM logic accelerator that can per- formdomain-specificcomputationssuchasdataencryptionandalsodataanalyticsinalogic-in- memoryfashion.Comparedtoconventionalmemory-logic-integrationarchitectures,thestorage data do not need to be loaded into volatile main memory, processed by logic, and written back afterwardwithsignificantI/Ocommunicationcongestion. In this book, we discuss the following research studies on this regard. First, we introduce anon-volatilein-memoryarchitecturethatbothdatastorageandlogiccomputingareinsidethe memoryblock.edatastorageandlogiccomputingislocatedinpairstoperformadistributed in-memorycomputing.WeillustratetheNVM-basedbasicmemoryandlogiccomponentsand find significant power reduction. Second, we develop a SPICE-like simulator NVM SPICE, whichimplementsphysicalmodelsfornon-volatiledevicesinasimilarwayastheBSIMmodel for MOSFET. We further develop the data storage and logic computing on spintronic devices. ese operations can be deployed for in-memory data encryption and analytics. Moreover, we illustratehowdataencryptionincludingadvancedencryptionstandard(AES)andSimoncipher canbeimplementedinthisarchitecture.Dataanalyticsapplicationssuchasmachinelearningfor super-resolutionandfacerecognitionareperformedonthedevelopedNVMplatformaswell. is book provides a state-of-the-art summary for the latest literature on emerging non- volatile spintronic technologies and covers the entire design flow from device, circuit to system perspectives, which is organized into five chapters. Chapter 1 introduces the basics of conven- xii PREFACE tional memory architecture with traditional semiconductor devices as well as the non-volatile in-memory architecture. Chapter 2 details the device characterization for spintronics by non- electrical states and the according storage and logic implementation by spintronics. Chapter 3 exploresthein-memorydataencryptionbasedonSTT-RAMaswellasdomainwallnanowire. e implementations of in-memory AES, domain wall-based Simon cipher and low power in- terconnect are explained in detail. Chapter 4 presents the system level architectures with data analytics applicationsfor the emerging non-volatilememory.In-memory machine learning and face recognitionarediscussed in this chapter. is bookassumes that readershave basic knowl- edge of semiconductor device physics. It will be a good reference for senior undergraduate and graduatestudentswhoareperformingresearchonnon-volatilememorytechnologies. HaoYu,LeibinNi,andYuhaoWang Singapore October2016 C H A P T E R 1 Introduction Abstract Computer memory is any physical device capable to store data temporarily or per- manently. It covers from fastest, yet most expensive, static random-access-memory (SRAM) to cheapest,butslowest,harddrivedisk,whileinbetweentherearemanyothermemorytechnolo- giesthatmaketrade-offsamongcost,speed,andpowerconsumption.However,thelargevolume ofmemory will experience significant leakagepower,especially at advancedCMOS technology nodes, for holding data in volatile memory for fast accesses. e spin-transfer torque magnetic random-accessmemory(STT-RAM),anovelnon-volatilememory-(NVM)basedonspintronic devices,hasshownthegreatbenefitsonpower-wallissuecomparedtotraditionalvolatilemem- ories. In addition, in traditional Von-Neumann architecture, the memory is separated from the central processing unit. As a result, the I/O congestion between memory and processing unit leadstothememory-wallissue,andultimatesolutionrequiresabreakthroughonmemorytech- nology.enovelin-memoryarchitectureisthesolutionofmemory-wallissuesthatbothlogic operationanddatastoragearelocatedinsidememory.ischapterreviewstheexistingsemicon- ductor memory technologies and traditional memory architecture first, and then introduces the spintronicmemorytechnologiesaswellasthein-memoryarchitecture. 1.1 MEMORYWALL e internet data has reached exa-scale (1018 bytes), which has introduced emerging need to re-examinetheexistinghardwareplatformthatcansupportintensivedata-orientedcomputing. Atthesametime,theanalysisofsuchahugevolumeofdataneedsascalablehardwaresolution for both big-data storage and processing, which is beyond the capability from pure software- based data analytic solution. e main bottleneck is from the well-known memory bottleneck. Assuch,oneneedstore-designanenergy-efficienthardwareplatformforfuturebig-datadriven application. A big-data-drivenapplicationrequires high-bandwidth with maintained low-powerden- sity.Forexample,web-searching applicationinvolvescrawling,comparing,ranking,and paging of billions of web-pages or images with extensive memory access. e microprocessor needs to processthestoreddatawithintensivememoryaccess.However,thepresentdatastorageandpro- cessinghardwarehavewell-knownbandwidth-wallduetolimitedaccessingbandwidthatI/Os; but also power-wall due to large leakage power in advanced CMOS technology when holding data.Assuch,adesignofscalableenergy-efficientbig-dataanalytichardwareishighlyrequired. 2 1. INTRODUCTION e following research activities attempted to alleviate the memory bottleneck problem for the futurebig-datastorageandprocessing. • Emergingnon-volatilein-memorycomputingisapromisingtechnologyforbig-dataori- ented computing. e application-specific accelerators can be developed within memory suchthatthedatawillbepre-processedbeforetheyarereadoutwiththeminimumnumber ofdatamigrationssuchthatthebandwidth-wallcanberelieved.Moreover,thenon-volatile memory devices hold information without using charge, such that leakage current can be significantlyreducedwiththepower-wallrelievedaswell. • Sparse-representeddatabycompressivesensingisaneffectiveapproachtoreducedatasize byprojectingdatafromhigh-dimensionalspacetolow-dimensionalsubspacewithessential feature preserved. Data stored in memory after compressive sensing can be recovered or directlyprocessed.isprocedurereducesdatacomplexityindatastorageaswellasindata analyticswithafurthersignificantpowerreductionandbandwidthimprovement. • Data analytics by a machine-learning accelerator can be developed for fast data analytics. e latest machine learning algorithm on-chip can accelerate the learning process with a potential to realize online training, which is important for applications in autonomous vehiclesandunmannedaerialvehicles. Inthisbook,weaimatfindingascalablehardwaresolutionbasedontheconceptofnon- volatile in-memory data-analytics accelerator. In order to achieve low power and high band- width (or energy efficient) in big-data-driven computing, we propose developing a non-volatile memory-(NVM)basedhardwareplatform,whereboththedatastorageandprocessingarebased on NVM devices with instant-switch-on as well as ultra-low leakage current. is can result in significant power reduction due to the non-volatility. Moreover, we will develop NVM-based logic accelerator that can perform domain-specific computation such as machine-learning with a logic-in-memory architecture. In contrast for the conventional memory-logic-integration ar- chitecture, the stored data must be loaded into volatile main memory, processed by logic, and written back with significant I/O communication and power overhead. Last, we will develop a machine-learningalgorithmbasedonsparse-representeddatatofurtherdealwithlarge-scaledata analytics.Asaresult,weoutlinethefollowingdetailedstudiesinthisbook. • First, we plan to develop an energy-efficient in-memory computing architecture by lever- agingthenon-volatilememorydevicesthatcanfundamentallyresolvethememorybottle- neckforbig-dataanalytics.Inthisbook,non-volatile-memorydevicesuchasspin-transfer torque magnetic random-access memory (STT-RAM) or domain wall nanowire (DW- NN) will be studied to realize both data storage and also in-memory logic. As such, it cangreatlyreducetheleakagepowerduetoitsnon-volatilestatewithoutholdingelectrons in nature. In addition, the logic-in-memory architecture will also be studied to perform logiccomputationlocally,thusrelaxingthedemandonI/Obandwidthandalleviatingthe bandwidthconstraint.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.