NRCPS-HE-56-07 TUW-07-15 ESI-1992 Non-topological non-commutativity in string theory Sebastian Guttenberg1,∗, Manfred Herbst2,∗∗, Maximilian Kreuzer3,∗∗∗, and Radoslav Rashkov4,† 8 0 1 NCSRDemokritos,INP,PatriarchouGregoriou&NeapoleosStr.,15310AgiaParaskeviAttikis,GREECE 0 2 CERN,1211Geneva23,SWITZERLAND 2 3 InstituteforTheoreticalPhysics,TU–Wien,WiednerHauptstr.8–10,1040Vienna,AUSTRIA n 4 ErwinSchro¨dingerInstituteforMathematicalPhysics,Boltzmanngasse9,1090Vienna,AUSTRIA a J 8 Keywords Noncommutativegeometry,D-branes,deformationquantization 1 PACS 02.40.Gh04.62.+v11.25.-w11.25.Uv ] Quantizationofcoordinatesleadstothenon-commutativeproductofdeformationquantization,butisalso h at the roots of string theory, for which space-time coordinates become the dynamical fields of a two- t - dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration p for Kontsevich’s solution of the long-standing problem of quantization of Poisson geometry by virtueof e hisformalitytheorem. InthecontextofD-branephysicsnon-commutativityisnotlimited,however,tothe h topolocial sector. Weshow thatnon-commutative effectiveactionsstillmakesensewhen associativityis [ lostandestablishageneralized Connes-Flato-Sternheimercondition throughsecondorder inaderivative expansion.ThemeasureingeneralcurvedbackgroundsisnaturallyprovidedbytheBorn–Infeldactionand 2 reduces tothesymplecticmeasure inthetopological limit, but remainsnon-singular even for degenerate v Poissonstructures.AnalogoussuperspacedeformationsbyRR–fieldsarealsodiscussed. 7 6 1 4 Contribution to the proceedings of the BW2007 Workshop ”Challenges Beyond the Standard Model”, . 2 September2-9,2007,Kladovo,Serbia 1 7 0 1 Introduction : v The non-commutativeproductof deformation quantization [1,2] can be derived from string theory in a i X topological limit where the space-time metric is small as compared to the anti-symmetric B-field (the r ancestor of the Poisson bi-vector) [3–5]. The non-commutative product thus amounts to a summation a of the leadingB-field contributionsto the effectiveaction. In thenon-symplecticcase thisinterpretation is spoiled, however, by the absence of a canonical measure. From the string theory point of view, on the other hand, associativity is lost for generic backgrounds [6], but the Born-Infeld action provides a canonical measure [4,7]. We show that the concept of effective actions does not require associativity, but rather a generalized Connes–Flato–Sternheimer condition called cyclicity [8,9], i.e. commutativity andassociativityuptosurfaceterms[10]. Cyclicityimplies,however,acompatibilityconditionbetween the star productandthe measure[9], whichforBorn-Infeldturnsoutto beequivalentto the generalized MaxwellequationforthegaugefieldontheD-brane[7,10].In[10]wefoundthatcyclicityalsorequiresa gaugemodificationoftheKontsevichproductatsecondderivativeorderinaderivativeexpansionandwe discussedtheD-branephysicsrelatedtothesemathematicalstructures. In section2 of thisnotewe reviewsomeaspects ofdeformationquantizationandformalityin simple termsbyillustratingtheemergenceofHochschildcocycles,Gerstenhaberbracketsandgaugetransforma- tionsaccompanyingdiffeomorphismsinderviativeexpansions. Insection3wediscussthestringyorigin ∗ [email protected] ∗∗ [email protected] ∗∗∗ [email protected] † [email protected] 2 S.Guttenberg,M.Herbst,M.Kreuzer,andR.Rashkov:Non-topologicalnon-commutativity ofthesestructuresandtheirinterpretationintermsofeffectiveactions,whichrequirestheexistenceofa measureandageneralizedConnes–Flato–Sternheimerproperty.WhileassociativityisrestrictedtoPoisson geometry,stringtheorynaturallyintroducestheBorn–Infeldmeasureandkeepscyclicity,atleastthrough second derivativeorder, independentlyof associativity and without a topologicallimit. We observe that the results foundin [10] straightforwardlyextend to non-constantdilaton backgrounds. In section 5 we discuss the Berkovitsstring in generalRR backgroundsand the resulting deformationof superspace. In section6weconcludewithadiscussionofopenproblemsandworktobedone. 2 Deformationquantization, Kontsevichproduct andformality The idea of deformation quantization is to emulate the operator product of quantum mechanics by an associativeproductf⋆gofphasespacefunctionsf,g ∈C∞(M)with i f⋆g−g⋆f f⋆g =fg+ ~{f,g} +O(~2) ⇒ lim ={f,g} , (2.1) 2 PB ~→0 i~ PB where the Poisson bracket can be written for arbitrary phase space coordinates xµ as a bi-derivation {f,g} =Θµν(x)∂ f∂ gintermsofabi-vectorfieldΘ∈Λ2TM. PB µ ν 2.1 PolyvectorsandtheSchouten–Nijenhuisbracket ElementsX ∈ Λ•TM oftheexterioralgebraoverthetangentspaceTM arecalledpolyvectorfieldsand thereisabilinearoperation,theSchouthen–Nijenhuis(SN)bracket [X(p),Y(q)]∈Λp+q−1TM for X(p) ∈ΛpTM and Y(q) ∈ΛqTM, (2.2) thatextendstheLiebracketofvectorfieldstoa gradedbi-derivationofdegree−1onT ∈ Λ•TM. The JacobiidentityofthePoissonbracketisequivalenttothevanishingoftheSNbracket[Θ,Θ], 2 e{{f,g} ,h} =0 ⇔ [Θ,Θ]=0 with [Θ,Θ]µαβ = e Θµρ∂ Θαβ. (2.3) PB PB ρ 3 X X Liederivativesinthedirectionofξ ∈ TM canalsobewrittenintermsoftheSNbracketL X = [ξ,X] ξ forallpolyvectorfieldsX ∈Λ•TM. 2.2 MoyalproductandKontsevichgraphs Incase ofconstantΘ, andhenceinparticularlocallyforDarbouxcoordinates,deformationquantization canbeachievedbytheMoyalproduct (f⋆g)(x)=exp i~Θµν∂ ∂ f(y)g(z) (2.4) 2 yµ zν y=z=x (cid:0) (cid:1) AfterageneralchangeofcoordinatesinphasespaceΘwillnotstayconstant,whichmotivatestheconsid- erationofdeformationquantizationforgeneralΘ.ForthesymplecticcasedetΘ6=0theexistenceofastar producthasbeenshownbyDeWildeandLecompte[11]andthefirstconstructionisduetoFedosov[12]. Some detailsanda historicalassessmentwith referencescanbe foundinthe review[2]. Forthe case of a generalPoisson structure Θ, which by definition obeys[Θ,Θ] = 0, the constructionof an associative productisdue to Kontsevich[1]andwill now bediscussed in moredetail. Associativityof this product is, in fact, a corollaryof the formality theorem, which establishesa quasi-isomorphismof L algebras. ∞ TheformalitymapU mapspolyvectorfieldsT topolydifferentialoperatorsU(T ,...,T )= w D i 1 n Γ Γ Γ andisconstructedintermsofgraphsΓandcoefficientswΓ. ThecoefficientswΓaredefinedbyPconvergent integralsinspiredbyopenstringFeynmandiagrams(cf. section3)withfunctionsinsertedontherealline andpolyvectorfieldsintheupperhalfplaneasillustratedinfig.2.1,wherethederivativesofthebidiffer- entialoperatorscorrespondtothearrowspointingatf andg. Thefirsttwographsfig. 2.1agivetheorder Θ andΘ2 termsof the Moyalproduct,while fig.2.1byieldsfirst derivativecorrectionsfornon-constant Θ. The latter will be worked out explicitly below. The precise relation of Kontsevich’s construction to correlationfunctionsoftopologicalsigmamodelsisduetoCattaneoandFelder[5]. 3 Θ Θ Θ Θ Θ Θ Θ a) b) s s s s s s s s f g f g f g f g Fig.2.1 Kontsevichgraphsfora)Moyal-typecontributionsandb)derivativecorrections,respectively. 2.3 Hochschildcohomology,Gerstenhaberbracket,andtheformalitytheorem Ratherthangivingabstractdefinitionsoftheinvolvedmathematicalstructureswenowillustratehowthey automaticallyshowupinsimplecalculations.Weignoreforamomenttherelation(2.1)toPoissonbrackets andconsiderageneraldeformationoftheproduct f⋆g =fg+~B (f,g)+O(~2) with B (f,g)=Bµνf g , f ≡∂ f, (2.5) 1 1 µ ν µ xµ wherederivativesoffunctionsareabbreviatedbysubscripts. TheO(~)contributiontotheassociator, f⋆(g⋆h)−(f⋆g)⋆h=~ fB (g,h)−B (fg,h)+B (f,gh)−B (f,g)h +O(~2), (2.6) 1 1 1 1 (cid:16) (cid:17) hasexactlytheformofaHochschildcoboundary[1] (δC)(f ,...,f )=f C(f ,...,f )−C(f f ,...,f )+C(f ,f f ,...,f )−... (2.7) 0 p 0 1 p 0 1 p 0 1 2 p There are, however, equivalences of the resulting deformed associative algebras due to invertible maps f →Df withdifferentialoperators D =1+~(Dµ∂ +Dµν∂ ∂ +...)+~2(Dµ∂ +...)+... (2.8) 1 µ 1 µ ν 2 µ thatrespecttheunitelementD1=1. Theyleadtothefollowingmodificationofthestarproduct, f →Df ⇒ f⋆′g =D(D−1f ⋆D−1g) (2.9) andhenceB′(f,g)−B (f,g)=−fD (g)+D (fg)−D (f)g,atorder~,whichisagainaHochschild 1 1 1 1 1 coboundary.ForthespecialcaseD =Dµν∂ ∂ thisimpliesthegaugeequivalenceB′(f,g)−B (f,g)= 1 1 µ ν 1 1 Dµνf g sothatforthefirstorderbidifferentialoperatorB (f,g)=Bµνf g ofeq. (2.5) thesymmetric 1 µ ν 1 1 µ ν partofBµν canbegaugedawaywithDµν =B(µν). WiththechoiceBµν = iΘµν wethusrecover(2.1). 1 1 1 1 2 ReturningtotheKontsevichgraphsfig. 2.1wenowwanttoworkoutthederivativecorrectionsthatare neededforassociativityatorder~2. ForthispurposewedefinetheMoyalpart [f⋆g]≡fg+i~Θµνf g − ~2ΘµαΘνβf g −... (2.10) 2 µ ν 8 µα νβ ofaproductf ⋆gastheresultofdroppingalltermswithderivativesactingonΘ. Then f⋆g =[f⋆g]−~2Θµρ∂ Θαβ(a[f ⋆g ]+b[f ⋆g ])+O ∂2 (2.11) ρ αµ β α βµ (cid:0) (cid:1) where O ∂2 only countsderivativesacting on Θ and the coefficientsω of the two graphsin fig. 2.1b Γ areaand(cid:0)b,r(cid:1)espectively. InsteadofdeterminingthesecoefficientsfromintegralsoverΘintheupperhalf planewedeterminethembyimposingassociativity.Thefirstderivativeorderpartoff⋆(g⋆h)is 1 −~2Xµαβ af ⋆(g⋆h) +bf ⋆(g⋆h) + f ⋆(g ⋆h )+af⋆g ⋆h +bf⋆g ⋆h ) (2.12) µα β α µβ µ α β µα β α µβ 4 h i withXµαβ =Θµρ∂ Θαβ,andtheO(∂)contributionsto(f⋆g)⋆hare ρ 1 −~2Xµαβ a(f⋆g) ⋆h +b(f⋆g) ⋆h − (f ⋆g )⋆h +af ⋆g ⋆h+bf ⋆g ⋆h) (2.13) µα β α µβ α β µ µα β α µβ 4 (cid:2) (cid:3) sothatf⋆(g⋆h)−(f ⋆g)⋆h=~2[f ∗g ∗h ] (a−1)Xµαβ+(a−b)Xαµβ−(b+1)Xβµα .Associativity µ α β 4 4 (cid:16) (cid:17) impliesthatthecoefficientof[f ∗g ∗h ]vanishes.UsingtheantisymmetryofΘwefirstobservethatX µ α β 4 S.Guttenberg,M.Herbst,M.Kreuzer,andR.Rashkov:Non-topologicalnon-commutativity ξ Θ [Θ,Θ] a) s b) s s c) s s s Fig.2.2 Dressingsofa)Liederivative,b)Poissonbracketandc)associator,respectively. cannotbetotallyantisymmetric.Thussymmetrizationinµα,αβandβµimpliesb=2a− 1, a=2b+ 1 4 4 anda+b=0,respectively.Theuniquesolutionisa=−b= 1 . Hence 12 1 f ⋆(g ⋆h)−(f ⋆g)⋆h=− ~2[f ∗g ∗h ] e Θµρ∂ Θαβ +O(∂2) (2.14) µ α β ρ 6 µXαβ sothat[Θ,Θ]=0isanecessaryconditionfortheexistenceofanassociativedeformation.TheKontsevich productthroughsecondderivativeorder(setting~=1) 1 1 f⋆g = [f⋆g]− Θµγ∂ Θνρ f ⋆g +f ⋆g + ∂ Θµρ∂ Θνσ[f ⋆g ] γ µν ρ ρ µν σ ρ µ ν 12 24 (cid:2) (cid:3) i i + Θµγ∂ Θνδ∂ Θρλ [f ⋆g −f ⋆g ]− ΘµγΘνδ∂ ∂ Θρλ f ⋆g −f ⋆g γ δ µρ νλ νλ µρ γ δ µνρ λ λ µνρ 48 48 (cid:2) (cid:3) 1 1 + (Θµγ∂ Θρλ)(Θνδ∂ Θστ) f ⋆g +2f ⋆g +f ⋆g +O(∂3) (2.15) 2122 γ δ µρνσ λτ µρτ λνσ λτ µρνσ (cid:2) (cid:3) hasbeendeterminedin[10]usingtheknowncoefficient 1 ofthegaugetermandsymmetryundercom- 24 plex conjugation combined with the exchange of f and g. Note that each term in (2.15) comprises the contributionsofaninfinitenumberofgraphswithMoyal-typeadditionstotheclassicalpartof⋆,sincethis formulaholdstoallordersintheundifferentiatedΘ’s. TheGerstenhaberbracketofpolydifferentialoperatorsP isthecommutator[P ,P ]withrespecttoan i 1 2 appropriatedefinitionof the compositionP ◦P of degree−1. For bidifferentialoperatorsthe bracket 1 2 thusyieldsatridifferentialoperator,andinthespecialcaseP =P =⋆thebracketbecomesproportional 1 2 totheassociator 1[⋆,⋆](f,g,h)=f⋆(g⋆h)−(f⋆g)⋆h.Theformalitymapcanberegardedasadressing,or 2 quantization,ofpolyderivationsT ∈ Λ•TM tohigherorderpolydifferentialoperatorsP . Theformality i i theoremensuresthatthismapisanL quasi-isomorphismwherethe(homotopy)Liealgebrastructures ∞ arerelatedtotheSNbracketandtheGerstenhaberbracket,respectively. Thecasesofvectorfieldsξ,PoissontensorsΘandrankthreetensorsJ ∈Λ3TM showninfig.2.2are ofparticularinterest.ThequantizationofΘyieldsthestarproduct(2.15).SincetheSNbracketismapped totheGerstenhaberbracket,J =[Θ,Θ]aswellasitsquantizationvanishinthecaseofaPoissonstructure [Θ,Θ] = 0. Since[⋆,⋆]istheassociatorthisestablishesassociativityoftheKontsevichproduct(compare fig.2.2ctoourresult(2.14)atleadingorder~2). ξ Θ ξ ξ Θ Θ Θ ξ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ r r r r r r r r r f f f f f f f f f (a) (bc) (AB) (CD) (EFG) () (HIJ) (KL) (MNP) Fig.2.3 Samplegraphsfordressedcoordinatetransformationsthroughsecondderivativeorder. For vectorfieldsξ the classical term is the Lie derivative,which amountsto a changeof coordinates. Its quantization yields an equivalence transformation D of the form (2.9) so that the Kontsevich prod- ξ ucttransformscovariantlyunderchangesofcoordinatesonlyupto gaugeequivalence. For infinitesimal transformations ∂ (f⋆ g)=D f⋆g+f⋆D g−D (f⋆g) with x˙µ =ξµ. (2.16) t t ξ ξ ξ Infig.2.3weenumeratethegraphsthatcontributetoinfinitesimaltransformations(i.e.linearinξ)through secondderivativeorderinΘ. Notethattheadditionallinescorrespondingtoderivativesactingonξandf 5 canleadtodifferenttensorstructure,asindicatedbycoefficientsA,...,P forthetermswithtwoderiva- tivesonΘ’s,plusaninfinitenumberofadditionalMoyal-typecontributions.Throughfirstderivativeorder 1 D =ξα∂ + ξα Θµν∂ Θρβ∂ ∂ +O(∂2). (2.17) ξ α 24 µρ ν α β AtsecondderivativeorderthegraphsdefinedifferentialoperatorsD containing(non-Moyal)termswith ξ up to fivederivatives,D f = ξαf +...+Pξα ∂ Θβµ∂ ΘργΘδν∂ Θσεf butmanycoefficients ξ α ρσ ν µ ν αβγδε maybezero. 3 Openstrings, Born–Infeldelectrodynamics and non-commutativity InordertorelatetheKontsevichproduct(2.15)tostringtheorywestartwiththePolyakovactionforclosed stringsmovinginacurvedbackgroundwith2-formfieldB. Inconformalgauge 1 S = d2z∂Xµ∂¯Xν g (X)+B (X) , (3.1) P 2πα′ ZΣ (cid:16) µν µν (cid:17) whereXµ : Σ −→ M mapstheclosedworldsheetΣto thetargetmanifoldM. Notethatthisactionis invariantunderthegaugetransformationδ B =dΛ. Λ Whenweconsideropenstrings, wehavetointroduceworldsheetswith boundariesandspecifya hy- persurface in M, i.e. a D-brane, to which the end points of open strings are mapped. In the following we will only consider space-filling branes. By Stokes’ theorem, (3.1) is not gauge invariant anymore, X∗δ B = X∗Λ,andwehavetointroduceacompensatorfieldAattheboundary,whichturnsout Σ Λ ∂Σ RtobeaU(1)gaRugefieldwithfieldstrengthF =dA. Theassociatedaction, S = X∗A= dt∂ XµA (X)= X∗F, (3.2) A t µ Z Z Z ∂Σ ∂Σ Σ thenrestoresgaugeinvarianceof(3.1)bysettingδ A=− 1 Λ+dλ. Λ,λ 2πα′ AsaconsequenceofgaugesymmetrytheeffectiveactiondependsonthefieldsAandB onlythrough thegaugeinvariantquantitiesF =B+2πα′F andH =dB =dF. ForslowlyvaryingfieldsF andgthe effectivetheoryontheD-braneisBorn–Infeldelectrodynamics[13]governedby S = dDx det(g +F ). (3.3) BI µν µν ZM q Letushaveacloserlookatthequantizationof(3.1)and(3.2)ontheupperhalfplane,conformallyequiv- alent to the disk. We split the embedding map into fluctuations around a constant mode, Xµ(z,z¯) = xµ +ζµ(z,z¯), andorganizetheperturbativequantizationintermsofaderivativeexpansionintheback- groundfields. Moreover,we regardthemetricg(x) andthecurvatureF(x) asaclassicalbackgroundin ordertoensureconformalinvariance. ThevariationoftheactionrequiresthemixedDirichlet–Neumannboundarycondition g ∂ Xν −F ∂ Xν =0, (3.4) µν t µν n ∂Σ (cid:12) whichleadstothefollowingprop(cid:12)agatorforfluctuationsattheboundary(τ,τ′ ∈∂Σ): 1 hζµ(τ)ζν(τ′)i=− Gµν(x)ln|τ −τ′|2+iπΘµν(x)ǫ(τ −τ′) , (3.5) 2π n o whereweintroducedG(µν)+Θ[µν] :=(g +F )−1andthesignfunctionǫ(τ)=τ/|τ|. µν µν Inthelimitwheng vanishes(withF keptfinite)[4],theactionS +S istopological. Onlythe µν µν P A second part in (3.5) survives, and the non-commutativeproducton the D-brane world volume becomes apparent.ForconstantbackgroundsitistheMoyalproduct.Forvaryingbackgroundswenotice,however, thattheEinsteinequationsforthebackgroundfieldsrequireH =dF =0inthetopologicallimit[14],i.e. F isasymplecticformwithPoissonstructureΘ = F−1. Theresultingnon-commutativeproductisthen theassociativeproduct(2.15)duetoKontsevich[1]. 6 S.Guttenberg,M.Herbst,M.Kreuzer,andR.Rashkov:Non-topologicalnon-commutativity 4 Associativity,cyclicinvarianceand effective actions From the string theory point of view, the assumption of Θ(x) being a Poisson structure is not natural. Theonlyconditiononthebackgroundfieldsshouldcomefromconformalinvariance,orequivalentlythe classical equationsof motion. Therefore,it is preferableto definethe non-commutativeproductwithout takingthetopologicallimit.Itisclearthatthefirstterminthepropagator(3.5)shouldplayasecondaryroˆle inthisdefinition,whichsuggeststoconsidertwo(off-shell)vertexoperatorsatadistanceτ′−τ = 1[7], i.e. 1 f(x)◦g(x):= Dζ e−S[X=x+ζ]f(X(0))g(X(1)). (4.1) |g+F| Z TheBorn–Infeldmeasurepintheprefactoriscancelledby(worldsheet)1-loopdiagrams.Athigherderiva- tiveordersofthebackgroundfieldsthemeasuregetscorrected[15]. Letuscommentonsomepropertiesofthisproduct. • AnimmediateconsequenceofgivinguponΘ(x)beingPoissonisthelossofassociativity,sothata sumoverdifferentconfigurationsofbracketswillappearinopenstringscatteringamplitudesandin theeffectiveaction.Inthetopologicallimit,thenon-commutativeproduct(4.1)becomestheKontse- vichproduct,uptogaugeequivalence,D(f ⋆g)=Df ◦Dg,sothatassociativityisrestored. • Aswasarguedin[10],thevariationalprincipleforthelow-energyeffectivetheoryrequiresthatthe non-commutativeproductiscyclic,i.e. Ωf ◦g = Ωf ·g and Ω(f ◦g)◦h= Ωf ◦(g◦h), (4.2) Z Z Z Z M M M M whereΩisameasure,whichrequires∂ (ΩΘµν)=0.Fromastringtheorypointofviewthemeasure µ ΩistheBorn–Infeldmeasurethatappearedin(3.3),i.e. Ω = |g+F|,andcyclicityfollowsfrom thegeneralizedMaxwellequationassociatedwiththeBorn–Infpeldaction(3.3): 1 ∂ ( |g+F|Θµν)=0 ⇐⇒ GρσD F − ΘρσH λF =0. (4.3) µ ρ σµ ρσ λµ 2 p This is in line with the assumption of a classical background, which ensures conformal invariance and,inparticular,cyclicinvarianceofdiskamplitudes. Noticethatifweincludethedilatonφinthe background,themeasureismodifiedto e−φ |g+F|. For Poisson structures the second conditionpin (4.2) follows from associativity, and the first is due toConnes–Flato–Sternheimer[16]. Infact, foranyvolumeformΩsubjectto∂ (ΩΘµν) = 0there µ exists a star-product that satisfies cyclic invariance (4.2) [9]. However, in contrast to the physical contextabove,thereisnocanonicalmeasureforPoissonstructures. • In [7] an explicit computation of the product (4.1) was given to first derivative order, ∂Θ, in the backgroundfield,buttoallordersinΘ. In[10]itwasshownthatthecyclicinvariance(4.2)uniquely fixesthenon-commutativeproducttosecondderivativeorder,withtheresult 1 f ◦g =f⋆g− ΘµρΘνσ∂ ∂ (logΩ)f g . (4.4) ρ σ µ ν 24 Thefirstcontributionisthesameexpression(2.15)astheKontsevichproductbutwithoutthePoisson constraintonΘandthesecondisagaugetermthatisneededtoensurecyclicinvariance. Ifwewantto usethenon-commutativeproduct(4.1)tocomputestringS-matrixelementswehaveto imposeon-shellconditionsnotonlyonthebackgroundfieldsbutalsoonthevertexoperatorinsertions.In thepresentcontextthevertexoperatorsarefunctions,f(X),andthustheon-shellconditionistheonefor anopenstringtachyonT(x) 1 1 (cid:3)T = ∂ ΩGµν∂ T =− T. (4.5) Ω µ ν α′ (cid:0) (cid:1) Thisfixesthekinetictermforthelow-energyeffectiveaction.Theresultis 1 1 8 S =− Ω Gµν∂ T ∂ T − T2− T (T ◦T) , (4.6) 2go2 ZM n µ ν α′ r9α′ o wherethecubictachyoninteractionwasfoundin[17]bycomputing3-pointamplitudes. 7 5 Superstrings and non-anticommutative superspace The superstring in Green-Schwarz(GS) related formulationsis an embeddingof a string in superspace. It thusappearsnaturalthat, in additionto non-commutativityof space-time coordinates, there shouldbe a mechanism that deformsthe anticommutationof the fermionic superspace coordinates. Indeedsuch a mechanism exists. Independentlyof string theory,special cases of non-anticommutingsupercoordinates were already considered by van Nieuwenhuizen and others in [18] (N = 1 SUSY, see [19]). A more 2 generalansatzwaspresentedin[20].Afterindicationsin[21,22]thatsimilarstructuresoriginatefromthe superstring, this could eventuallybe shown in [23] for a string in four dimensions(with six dimensions compactified on a Calabi-Yau) and was generalized in [24] to ten dimensions. In both cases a constant RR-field-strength was considered and turned out to be responsible for the nonanticommutativity of the supercoordinates. The calculations where performed in different versions of the covariant superstring [25–27]. Thisnon-(anti)commutativitycan againbeimplementedvia a star product,now onsuperspace (see [28] and referencestherein). For non-constantbackgroundfields (but in the topologicallimit), this correspondsto a graded generalization of Kontsevich’s associative star product. A derivation from a σ- modelwithsuper-targetspacealongthelinesofCattaneoandFelder[5]waspresentedin[29]. Theeffect ofaconstantRR-potential(notfieldstrength)onthedeformationofthebosonicspacewasalreadystudied in [31]. In the followingwe sketch how non-anticommutativityof superspace arises from the Berkovits purespinorsuperstring[24]. AlthoughwewillconsideranopenstringwithtypeIsupersymmetry,wewanttocoupleittothetype IIbulkfields(seee.g.[31]).InparticulartheRR-fieldsbelongtothebulkandwilltakeovertheroleofthe B-field inthefermioniccase. Itisthereforenecessarytoembedthestringintoa typeIIsuperspacewith coordinatesxM = (xm,θµ,θˆµˆ). InthissectionGreekletterswillbereservedforfermionicindiceswhile bosonicindicesaredenotedbyLatinletters. Inconformalgauge,theGSactioninflatbackgroundreads S ≡ d2z 1Πaη Πb+L (conformalgauge) GS 2 z ab ¯z WZ R L ≡ −1Πa θγ ∂¯θ−θˆγ ∂¯θˆ + 1(θγa∂θ)(θˆγ ∂¯θˆ)−(z ↔z¯), (5.1) WZ 2 z a a 2 a (cid:16) (cid:17) whereΠa arethesupersymmetricmomenta. Theycanbedescribedasthepullbackofthebosonicpart z/z¯ ofthesupervielbein Πa EA ≡dxME A fl=at dxa+dθγaθ+dθˆγaθˆ, dθα , dθˆαˆ (5.2) M z }| { (cid:0) (cid:1) to the worldsheet. Lettersfromthe beginningof the alphabetshalldenote“flat indices”(with respectto thelocalframe),whilelettersfromtheendofthealphabetwilldenote“curvedindices”.Thisdistinctionis morerelevantforthecurvedbackgroundtobediscussedlater.Asusual,γa denotestheoff-diagonalchiral αβ block of the 10-dimensionalDirac gammamatrix Γa, in a representationwhere it is real and symmetric (i.e. gradedantisymmetric)intheindicesαandβ. The Wess-Zumino term L is responsible for the existence of a local fermionic symmetry, the κ- WZ symmetry. Indeed,thetheorycontainsanumberoffermionicconstraintsd ,dˆ . Onlyhalfofeachset, zα z¯α however,isfirstclassandtheconstraintalgebraisthereforenotclosed: {d (σ),d (σ′)} ∝ 2γa Π δ(σ−σ′). (5.3) zα zβ αβ za Beingaspinorinanirreduciblerepresentation,d cannotcovariantlybeseparatedintofirstandsecond zα classandthusdoesnotallowcovariantquantization.Alongstruggletoovercomethisproblemresultedin theinventionofthepurespinorstring[27,30]asanalternativeformalism. Berkovits’purespinorformalismhastwobasicingredients.Thefirstisafreeactionoftheform S = d2z 1∂xmη ∂¯xn+∂¯θαp +∂θˆαˆpˆ free 2 mn zα z¯αˆ = R d2z 1Πaη Πb +L +∂¯θαd +∂θˆαˆdˆ , (5.4) 2 z ab z¯ WZ zα z¯αˆ R where p , pˆ are independent variables and d ≡ p − (γ θ) ∂xa − 1θγa∂θ − 1θˆγa∂θˆ and zα z¯α zα zα a α 2 2 its hatted counterparthave the same algebra as the constraints of the G(cid:0)S-string. In addition, this a(cid:1)ction 8 S.Guttenberg,M.Herbst,M.Kreuzer,andR.Rashkov:Non-topologicalnon-commutativity coincidesclassicallywith theGS-actionford = dˆ = 0. Thesecondbasic ingredientarethe BRST zα z¯αˆ operators Q= dzλαd , Qˆ = dz¯λˆαˆdˆ , (5.5) zα z¯αˆ which implemeHnt in some sense thHe constraints d = dˆ = 0 cohomologically. λα and λˆαˆ are zα z¯αˆ ghost fields of even parity. Containing also second class constraints, the above BRST operators fail to be nilpotent in general. This can be repaired by constraining the ghost fields to be so-called pure spinors, obeying λγaλ = λˆγaλˆ = 0. Like the fermionic coordinates, the ghost fields should be left and right-moving respectively and one thus adds the corresponding ghost term to the free action (5.4): S =S + d2z ∂¯λαω +∂λˆαˆω +L (λγaλ)+Lˆ (λˆγaλˆ).Theimplementationofthepure ps free zα z¯αˆ zz¯a zz¯a spinor constraiRntswith the help of Lagrangemultipliersimmediatelyreveals(byvaryingwith respectto the ghost) a gaugesymmetry of the antighostsof the formδ ω = µ (γaλ) which correspondsto (µ) zα za α the (first-class)pure-spinorconstraints. Becausethe fieldequationsarebasicallyfree,onegetsfreefield operatorproductsafterquantization. Fortheantighostfield,thisstatementisrestrictedtogaugeinvariant operatorsliketheghostcurrentortheLorentzcurrent. Apartfromthecentralcharges,theirOPEslookas if there was no pure spinor constraint. To determine the centralcharges, one has to solve the constraint once(seee.g.[27]). Inordertocompletethedescriptionfortheopenstring,westillneedboundaryconditions.Forvanishing backgroundanaturalchoiceistosetθ = θˆandλ = λˆ attheboundary. Thiscanbeimplementedbythe variationofaboundarytermthatoneshouldaddtotheaction. Thepreciseformofthisboundarytermis fixedbyN =1supersymmetry,BRSTinvarianceandtheantighostgaugesymmetry.Asthefinalformof theboundaryactionisquitelengthyandnotveryilluminating,wereferto[32]forfurtherdetails. Theopenstringinageneralbackgroundofbulkandboundaryfieldsconsistsofabulkpartofthesame form as a closed string in generalbackgroundand an additional boundarypart. The closed pure spinor superstringin generalbackgroundwasstudied first byBerkovitsandHowe in [33]. Alreadyat classical level, conservation and nilpotency of the BRST charges implement the type II supergravity constraints. Those,inturn,guarantee1-loopquantumconformalinvarianceofthetheory[34].Thepresentationofthe bulkpartinthefollowingisbasedon[35]. Thestartingpointisthemostgeneralclassicallyconformally invariantaction: S = d2z 1∂xM(G (։x)+B (։x))∂¯xN +∂¯xME α(։x)d +∂xME αˆ(։x)dˆ + bulk MN MN M zα M z¯αˆ Z 2 +d Pαβˆ(։x)dˆ +λαC βγˆ(։x)ω dˆ +λˆαˆCˆ βˆγ(։x)ωˆ d + zα z¯βˆ α zβ z¯γˆ αˆ z¯βˆ zγ + ∂¯λβ+λα∂¯xMΩ β(։x) + ∂λˆβˆ +λˆαˆ∂xMΩˆ βˆ(։x) ωˆ + Mα Mαˆ z¯βˆ (cid:16) (cid:17) (cid:16) (cid:17) +1L (λγaλ)+ 1Lˆ (λˆγaˆλˆ)+λαλˆαˆS ββˆ(։x)ω ωˆ (5.6) 2 zz¯a 2 z¯zaˆ ααˆ zβ z¯βˆ The variable ։x containsxm,θµ andθˆµˆ. In additionto theaction, we needthetwo BRST operators. In principletheycouldcontainbackgroundfieldsaswell,butitisalwayspossibletoreparametrized and zα dˆ suchthattheyhavethesameformasintheflatcase. Consistencyoftheequationsofmotionwiththe z¯αˆ purespinorconstraintsrequiresthatthebackgroundfieldsΩMαβ andΩˆMαˆβˆareeachasumofaspinorial Lorentz-transformationanddilatationin the lasttwo indices. Theycan thusbe regardedasLorentzplus scaleconnections.Thispropertyalsoestablishestheantighostgaugesymmetryinthegeneralcase. BRST invarianceoftheactionrequiresthatthesymmetrictwo-tensorisoftheformG = E aη E b. The MN M ab N backgroundfields E a, E α andE αˆ can then be combinedto a single objectE A andregardedas M M M M supervielbein. BRST invariance and nilpotencyof the BRST transformationsput several restrictions on thebackgroundfieldswhichturnouttobeequivalenttothetypeIIsupergravityconstraints[33–35]. For the moment, we restrict ourselves to a glance at the propagator. I.e., we are interested in the quadratic part of the action and do not yet need all the constraints. Expanding the coordinates around a constant zero mode, restricting to vanishing zero mode for the fermionic coordinates and the ghosts, choosingaparametrizationwhichcorrespondstotheWZ-gaugeandrestrictingtothequadraticpart,one 9 arrivesat S | = d2z 1∂ζm e a(→x)η e b(→x)+B (→x) ∂¯ζn+d Pαβˆ(→x)dˆ (5.7) qu θ=λ=0 2 m ab n mn zα z¯βˆ R (cid:16) (cid:17) +∂¯ζmψ α(→x)d +∂¯ζµδ αd +∂ζmψˆ αˆ(→x)dˆ +∂ζµˆδ αˆdˆ +∂¯λβω +∂λˆβˆωˆ m zα µ zα m z¯αˆ µˆ z¯αˆ zβ z¯βˆ withxM(z,z¯) = xM +ζM(z,z¯). AtthisstageitbecomesvisiblethattheRamond-Ramond(RR)fields Pαβˆ will enter the propagatorbetween the fermionic coordinates. This observation was made for con- stant RR-fields in [23] for four dimensions (with six compactified on a Calabi-Yau) and in [24] for ten dimensions.Theassociatedanticommutationrelationswerefoundtobe {θα,θˆβˆ}∝Pαβˆ. (5.8) TurningonthefieldstrengthF modifiestheboundaryconditionsforallworldsheetfieldsandalsoleads toaRRbackgrounddependentshiftinthenoncommutativityparameterΘmn[31]. Forgeneralbackgrounds,oneneedstochecktheconsistencyoftheboundaryactionwiththebulkBRST transformationsandthepurespinorconstraints. Alreadyfortheopenpurespinorstringinanopenstring backgroundthisisalongstory,whichwasdiscussedbyBerkovitsandPershinin[32]. Inadditiontothe boundarytermthatwasmentionedbeforetheyaddtheintegratedopenstringvertexoperatoroftheform 1 V ∝ dτ θ˙αA (x,θ )+ΠmB (x,θ )+d+Wα(x,θ )+ (N )β(γF)α(x,θ ) (5.9) Z + α + + m + α + 2 + α β + to the action. The worldline fields with index ’+’ are just suitable linear combinations of the left and rightmoversand(N )β ∝λβω+.TheobjectsA ,B ,WαandFαβareN =1backgroundsuperfields. + α + α α m TheconsistencyrequirementsoftheboundaryactionwithBRSTinvarianceandthepurespinorconstraint leadstothefieldequationsofsupersymmetricBorn–Infeldforthesebackgroundsuperfields. Inordertogeneralizetheresult(5.8)tonon-constantbulkfieldsonehastobecomeyetmoregeneral, combiningtheboundarypartV withthebulkaction(5.6)andstudyingtheconsistentboundaryconditions andfieldequations.Thisisworkinprogress. 6 Conclusion Inthisnotewe gaveanintroductiontotheKontsevichproductanddiscussedourproposalforageneral- izationtothenon-associativecase. Weestablishedcyclicitythroughsecondderivativeorder,whichallows forthenon-commutativeproducttobeusedintheconstructionofeffectiveactions. Wecheckedthatour previousresults[10]generalizetonon-constantdilatonbackgrounds,withtheonlymodificationbeingthe prefactorexp(−φ)inthemeasure. We alsoreviewedtheexistingresultsandideasaboutgeneralizations tosuperstrings,whichhavebeeninvestigatedsofarforconstantbackgroundfields. There is a number of obviousdirections for further work. For the bosonic string a non-commutative generalization of the gauge field effective action should be constructed, which presumably is related to derivativecorrectionstothemeasure. Thenon-abeliancaseshouldalsohaveinterestingimplicationsfor commutativenon-abelienBorn-Infeldactions. A quite demandingtask will be the generalizationof our resultstosuperstringsincurvedRRandB-fieldbackgrounds.Onthemoremathematicalside,itwouldbe interestingtoestablishcyclicitytoallordersinthederivativeexpansionandifpossibleexplicitlyconstruct thenon-associativeproduct. Acknowledgements We would like to thank Giovanni Felder, Karl-Georg Schlesinger and Ricardo Schiappa for helpfuldiscussions.S.G.wassupportedbytheEuropeanNetworkonRandomGeometry,EECGrantNo.MRTN-CT- 2004-005616. M.K.acknowledgessupportbytheAustrianResearchFundsFWFgrantP19051-N16. References [1] M.Kontsevich,DeformationquantizationofPoissonmanifolds,I,[arxiv:q-alg/9709040]. 10 S.Guttenberg,M.Herbst,M.Kreuzer,andR.Rashkov:Non-topologicalnon-commutativity [2] D.Sternheimer,Deformationquantization: Twentyyearsafter,AIPConf.Proc.453(1998)107 [arXiv:math.qa/9809056]. [3] V.Schomerus,D-branesanddeformationquantization,JHEP9906(1999)030[arxiv:hep-th/9903205]. [4] N.Seiberg,E.Witten,Stringtheoryandnoncommutativegeometry,JHEP9909(1999)032[hep-th/9908142]. [5] A.S.Cattaneo, G.Felder, A pathintegral approach totheKontsevichquantization formula, Commun. Math. Phys.212(2000)591[arxiv:math.qa/9902090]. [6] L.Cornalbaand R.Schiappa, Nonassociative starproduct deformations forD-braneworldvolumes incurved backgrounds,Commun.Math.Phys.225(2002)33[arXiv:hep-th/0101219]. [7] M.Herbst,A.Kling, M.Kreuzer, Starproductsfromopenstringsincurvedbackgrounds, JHEP0109(2001) 014[arXiv:hep-th/0106159]. [8] B.Shoikhet,Onthecyclicformalityconjecture,[arXiv:math.qa/9903183]. [9] G.FelderandB.Shoikhet,Deformationquantizationwithtraces,[arXiv:math.qa/0002057]. [10] M.Herbst,A.Kling,M.Kreuzer, Cyclicityofnon-associativeproductsonD-branes,J.HighEnergyPhysics 0403(2004)003[arxiv:hep-th/0312043] [11] De Wilde, M. and Lecomte, P.B.A. Existene of star-products and of formal deformations of the Poisson Lie algebraofarbitrarysymplecticmanifolds,Lett.Math.Phys.7(1983)487-496 [12] FedosovB.B.FormalquantizationinSometopicsofmodernmathematicsandtheirapplicationstoproblemsof mathematicalphysics(Moscow,1985)129;Quantizationandindex,Dokl.Akad.NaukSSSR291(1986)82 [13] E.S.Fradkin,A.A.Tseytlin,Nonlinearelectrodynamicsfromquantizedstrings,Phys.Lett.B163(1985)123. [14] L. Baulieu, A. S. Losev and N. A. Nekrasov, Target space symmetries in topological theories. I, JHEP 0202 (2002)021[arXiv:hep-th/0106042]. [15] Y.Okawa,DerivativecorrectionstoDirac–Born–InfeldLagrangianandnon-commutativegaugetheory,Nucl. Phys.B566(2000)348[arXiv:hep-th/9909132]. [16] A.Connes,M.Flato,D.Sternheimer,Closedstar-productsandcycliccohomology,Lett.Math.Phys.24(1992)1 [17] M. Herbst, A. Kling and M. Kreuzer, Non-commutative tachyon action and D-brane geometry, JHEP 0208 (2002)010[arXiv:hep-th/01mmnnn]. [18] J.H.SchwarzandP.VanNieuwenhuizen, SpeculationsConcerningAFermionicSubstructureOfSpace-Time, Lett.NuovoCim.34(1982)21. [19] N. Seiberg, Noncommutative superspace, N = 1/2 supersymmetry, field theory and string theory, JHEP 0306 (2003)010[arXiv:hep-th/0305248]. [20] D.Klemm,S.PenatiandL.Tamassia,Non(anti)commutativesuperspace, Class.Quant.Grav.20(2003)2905 [arXiv:hep-th/0104190]. [21] S.Ferrara,M.A.Lledo,Someaspectsofdeformationsofsupersymmetricfieldtheories,JHEP0005(2000)008 [arXiv:hep-th/0002084]. [22] P. Kosinski, J. Lukierski and P. Maslanka, Quantum deformations of space-time SUSY and noncommutative superfieldtheory,[arXiv:hep-th/0011053]. [23] H.OoguriandC.Vafa,TheC-deformationofgluinoandnon-planardiagrams,Adv.Theor.Math.Phys.7(2003) 53[arXiv:hep-th/0302109]. [24] J.deBoer,P.A.GrassiandP.vanNieuwenhuizen,Non-commutativesuperspacefromstringtheory,Phys.Lett. B574(2003)98[arXiv:hep-th/0302078]. [25] N.Berkovits,CovariantquantizationoftheGreen-SchwarzsuperstringinaCalabi-Yaubackground,Nucl.Phys. B431(1994)258[arXiv:hep-th/9404162]. [26] P.A.Grassi,G.PolicastroandP.vanNieuwenhuizen, Anintroductiontothecovariantquantizationofsuper- strings,Class.Quant.Grav.20(2003)S395[arXiv:hep-th/0302147]. [27] N.Berkovits,ICTPlecturesoncovariantquantizationofthesuperstring,[arXiv:hep-th/0209059]. [28] I.V.Tyutin,Thegeneralformofthestar-productontheGrassmanalgebra,Theor.Math.Phys.127(2001)619 [Teor.Mat.Fiz.127(2001)253][arXiv:hep-th/0101046]. [29] I.ChepelevandC.Ciocarlie,Apathintegralapproachtononcommutativesuperspace,JHEP0306(2003)031 [arXiv:hep-th/0304118]. [30] N. Berkovits, Super-Poincare´ covariant quantization of the superstring,JHEP 0004 (2000) 018 [arXiv:hep- th/0001035]. [31] L. Cornalba, M. S. Costa and R. Schiappa, D-brane dynamics in constant Ramond-Ramond potentials and noncommutativegeometry,Adv.Theor.Math.Phys.9(2005)355[arXiv:hep-th/0209164]. [32] N.BerkovitsandV.Pershin,SupersymmetricBorn-Infeldfromthepurespinorformalismoftheopensuperstring, JHEP0301(2003)023[arXiv:hep-th/0205154]. [33] N.BerkovitsandP.S.Howe,Ten-dimensionalsupergravityconstraintsfromthepurespinorformalismforthe superstring,Nucl.Phys.B635(2002)75[arXiv:hep-th/0112160]. [34] O.A.BedoyaandO.Chandia,One-loopconformalinvarianceofthetypeIIpurespinorsuperstringinacurved background,JHEP0701(2007)042[arXiv:hep-th/0609161]. [35] S.Guttenberg,SuperstringsinGeneralBackgrounds,[http://www.ub.tuwien.ac.at/diss/AC05035309.pdf] PhD-thesis2007,TU-Vienna.