ebook img

Non-Standard Models of Arithmetic - The Institute for Logic PDF

133 Pages·2010·0.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Standard Models of Arithmetic - The Institute for Logic

Non-Standard Models of Arithmetic: a Philosophical and Historical perspective MScThesis(Afstudeerscriptie) writtenby Nicola DiGiorgio (bornMarch18th,1985inMarianoComense,Italy) underthesupervisionofDrCatarinaDutilhNovaesandProfDrDickdeJongh,and submittedtotheBoardofExaminersinpartialfulfillmentoftherequirementsforthe degreeof MScinLogic attheUniversiteitvanAmsterdam. Dateofthepublicdefense: MembersoftheThesisCommittee: September3,2010 DrCatarinaDutilhNovaes ProfDrDickdeJongh DrBenediktLo¨we DrKatrinSchulz Contents 1 DescriptiveuseoflogicandIntendedmodels 1 1.1 Standardmodelsofarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AxiomaticsandFormaltheories . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Hintikkaandthetwousesoflogicinmathematics . . . . . . . . . . . . . . 5 1.4 Typesofcompletenessinformaltheories . . . . . . . . . . . . . . . . . . . 6 1.5 Aheuristictoadescriptiveuseoflogic . . . . . . . . . . . . . . . . . . . . . 9 1.6 FromStandardmodelstoIntendedmodels . . . . . . . . . . . . . . . . . . 11 1.6.1 Intendedmodelsandtheaxiomatizationofarithmetic . . . . . . . 11 1.6.2 Finalremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Non-Standardmodels: anattempteddefinition . . . . . . . . . . . . . . . . 17 2 Thephilosophicalphase- DedekindandthebirthofNMoA 19 2.1 Dedekindandthebirthofnon-standardmodels . . . . . . . . . . . . . . . 22 2.1.1 Dedekind’sworkontheseriesofnaturalnumbers . . . . . . . . . . 22 2.2 LettertoKeferstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Dedekind’sintroductoryremarks . . . . . . . . . . . . . . . . . . . 25 2.2.2 Dedekind’stenetsfortheseriesofnaturalnumbers . . . . . . . . . 29 2.3 Dedekind’ssixthprinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1 Theexistenceofnon-standardmodelsofarithmetic . . . . . . . . . 35 2.3.2 AlienintrudersandChains . . . . . . . . . . . . . . . . . . . . . . . 40 2.4 HaoWang: DedekindandNon-standardmodels . . . . . . . . . . . . . . . 44 2.5 Meta-propertiesandArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 Dedekind: completenessandcategoricity . . . . . . . . . . . . . . . . . . . 51 2.6.1 Completecharacterisation . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6.2 CompletecharacterisationasCategoricity . . . . . . . . . . . . . . . 52 2.7 Tosumup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 i CONTENTS 3 Thephilosophicalphase- SkolemandtheproofoftheexistenceofNMoA 60 3.1 Skolemandnon-standardmodels. . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 SkolemandtheexistenceofNMoA . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 CompactnessandthemodernproofoftheexistenceofNMoA . . . . . . . 68 3.5 Skolem’sproofoftheexistenceofNMoA . . . . . . . . . . . . . . . . . . . 72 3.6 Skolem’sphilosophyandtheproofoftheexistenceofNMoA . . . . . . . 80 3.7 Descriptivevsdeductiveuse: 1stvs2ndorderlogic . . . . . . . . . . . . . 85 3.7.1 Twologicalframeworks . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.7.2 Dedekind,Skolemandtheirfoundationalgoals . . . . . . . . . . . 87 4 Themathematicalphaseandtheattemptofaphilosophicalrevival 91 4.1 Anexegeticalandhistoricalclarification . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Theoriginofthephrase”non-standardmodel” . . . . . . . . . . . 91 4.1.2 Doesnon-standardamounttounintended? . . . . . . . . . . . . . . 95 4.2 Themathematicalphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.1 Fromthephilosophicalphasetothemathematicalone . . . . . . . 98 4.2.2 HenkinandtheordertypeofNMoA . . . . . . . . . . . . . . . . . 99 4.2.3 Twomathematicalresults . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3 Aphilosophicalrevival? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.1 Tennenbaum’sTheoremandStructuralism . . . . . . . . . . . . . . 102 A FirstorderandSecondorderlanguages 110 A.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ii Clarityisthegoodfaithofphilosophers. (ArthurSchopenhauer) BernardofChartresusedtosaythatwearelikedwarfsontheshouldersofgiants, sothatwecanseemorethanthey,andthingsatagreaterdistance, notbyvirtueofanysharpnessofsightonourpart,oranyphysicaldistinction, butbecausewearecarriedhighandraisedupbytheirgiantsize. (JohnofSalisbury) Alla mia nazione Nonpopoloarabo,nonpopolobalcanico,nonpopoloantico manazionevivente,manazioneeuropea: ecosasei? Terradiinfanti,affamati,corrotti, governantiimpiegatidiagrari,prefetticodini, avvocatucciuntidibrillantinaeipiedisporchi, funzionariliberalicarognecomegliziibigotti, unacaserma,unseminario,unaspiaggialibera,uncasino! Milionidipiccoliborghesicomemilionidiporci pascolanosospingendosisottogliillesipalazzotti, tracasecolonialiscrostateormaicomechiese. Proprioperche´ tuseiesistita,oranonesisti, proprioperche´ fosticosciente,seiincosciente. Esoloperche´ seicattolica,nonpuoipensare cheiltuomalee´ tuttomale: colpadiognimale. Sprofondainquestotuobelmare,liberailmondo. (PierPaoloPasolini) iii Abstract Overthelastfiftyyears, thestudyofnon-standardmodelsofarithmetichasbecome a fertile and highly technical mathematical branch. Nevertheless, surprising as it might seemtoday,thetopicofnon-standardmodelswasbornasagenuinephilosophicalissue. My work sets out to investigate the philosophical and historical significance of non- standardmodelsofarithmetic. Notonlyhasnon-standardmodelsofarithmeticencoun- tered a scarce success in what concerns philosophy, but also a detailed presentation on thebeginningsofthetopichasneverbeenwritten. Inparticular, Iwilldiscusstheoriginsofnon-standardmodelsofarithmeticwithre- specttothepioneeringworkofRichardDedekindandThoralfSkolem,andstrivetoshed light on the relationship between philosophy, logic and mathematics in what concerns arithmeticaltheoriesandfoundationalstudiesinmathematics. Keywords: Non-standardmodels, intendedmodel, descriptiveuseoflogic, Peano Arithmetic,Dedekind,Skolem,Tennenbaum’sTheorem,foundationsofmathemat- ics. iv Introduction To fully grasp the significance of NON-STANDARD MODELS, we have to go back to the originsofmathematicallogic. Thatistosay,totracethehistoricaldevelopmentsthathave resulted in what we call logic today. Dry as it may seem at a first glance, the historical approachIpursuehereislikelytocomeoutasanexcellentwaytocastafresh,brand-new lightonage-oldissuesthatseemedtobesettledonceandforall. Aswegraduallymove towards the role of non-standard models of arithmetic, history, philosophy, logic and mathematicscomeoutasinseparablyinterwoven. Ontopofthat,notonlyhasthetopic of NON-STANDARD MODELS encountered a scarce success in what concerns philosophy, butalsoaphilosophicalandhistoricalpresentationaboutthebeginningsofthetopichas never been written. Hopefully, this research may constitute a starting point for much neededfurtherworkonthesubject. WhyNon-Standardmodels? Today the issue of NON-STANDARD MODELS represents a highly technical mathemat- ical field. However, to tell the story of these models, we have to turn to philosophy prior to mathematics. Surprising as it may seem today, I argue that the mathematical researchconcerningnon-standardmodelsisgroundedonprofoundphilosophicalroots. Thisworkintendstoinvestigatetheseroots,whichmayultimatelyshednewlightonthe recentmathematicalresults. WhyNon-Standardmodelsofarithmetic? Needless to say that the phrase “non-standard models” does not pertain to the sole arithmetical sphere, it may also refer to the set-theoretical case (pointed out by Skolem in 1922astheexistenceof“countable”modelsofthefirstorderaxiomatisationofset-theory —aphenomenonknowntodayasSkolem’sParadox),ortonon-standardanalysis(which dealswiththeexistenceof“special”numbers,callednon-standard,exploitedtoprovide arigorousdefinitionofelementsknowninanalysisas“infinitesimals”). Nevertheless, inthisworkIwillconfinemyselftothearithmeticalcase. Thereasons aremainlythree: • Ibelievethatarithmeticrepresents,inthisrespect,thefirststepintheinvestigation v of non-standard models. In fact, the meagre presence, in the philosophical litera- ture,ofauniformandall-comprehensivetreatmentofnon-standardmodelsmakes thearithmeticalaccountaseminalandself-containedresearch; • forahistoricalandexegeticalreasons: thelargenumberofhistoricalpapersinarith- metic lends itself to an in-depth study that can represent a good starting point for new perspectives on old debates (e.g. whether arithmetical theories could reach somedegreeofcompleteness;whichlogicisthemostsuitableforarithmeticalthe- ories;etc); • fortherelevancewithrespecttothepresent-daydebateinphilosophyofmathemat- ics: thefieldofnon-standardmodelscanprovidesomeresults(e.g.Tennenbaum’s Theorem)forthecurrentphilosophicaldiscussion. To sum up, in this thesis I will emphasise the importance of non-standard models of arithmeticasagenuinephilosophicalissue. Thephilosophicalandmathematicalphaseinthedevelopmentofnon-standardmod- elsofarithmetic Commonly,thespacededicatedinlogicaltextbooks,ifany,tonon-standardmodelsis quite exiguous: Hodges discusses them in half a page; Van Dalen does not write more than a couple of pages on them; the only exception is Boolos’ book where a seventeen pagechapterisdevotedtoarathertechnicalpresentationofthetopic.1 On the other hand, there are only two fundamental references on the non-standard models,so-called”bibles”bytheinsiders,thatdojusticetowhatshouldberegarded,by thistime,asanimportantandpromisingfieldofresearch: [kaye91]andthemorerecent [kossak06].2 On top of that, we should note that these two monographs are strongly mathematicallyoriented. At the end of the day, it would then seem that the concept of non-standard models haslittletocontributetophilosophicaldebates. Roughlyspeaking,thetwomathematical studies along with the meagre logical treatment exhaust the literature on non-standard models. An exception is [smorynski84] which was indeed a forerunner attempt to give a historical account of non-standard models. Before the publishing of [kaye91] in 1991, ”the only, and not easily available, source was the excellent notes of Craig Smorynski [smorynski84] from his lectures on nonstandard models at the University of Utrecht in 1978.”3 1See[hodges01,p.70],[vandalen04,p.113,pp.121-122],[boolos07,ch.25] 2Strictlyspeaking,[kossak06]presentsitselfascontinuationof[kaye91]. 3[kossak06,p.viii] vi Although Smorynski’s lecture notes have the purpose of presenting the main math- ematical results, at the beginning of his text some historical considerations are put for- ward. Accordingtohim, theintentionofthenotesis”togiveapartlyhistoricalaccount ofthedevelopmentofthesubject.”4Inparticular,Smorynskipointsoutthattwodifferent approachesofnon-standardmodelscanbeidentified. It is also worth mentioning that Skolem’s goal5 in constructing nonstandard models was philosophical: He aimed to shew that first-order logic could not characterise the number series; he did not care to start a new subject. Until the1960s,thiswasgenerallythecase-nonstandardmodelsofarithmeticwere either objects of philosophical interest or tools, not objects of mathematical interestintheirownright. [smorynski84,p.3,myemphasis] For Smorynski, Skolem considered non-standard models as nothing but limitative results, whereas from the 1960s onwards these models gained their own importance as entities. Following Smorynski, we distinguish two historical phases: one ”philosophical”, which is characterised by the work of Dedekind (as will argue) and Skolem, and the other one ”mathematical” which goes from the 1960s and onwards. The quotation of Smorynski appears in the first paragraph that he entitles ”The Beginnings (the 1950s and Earlier)”. Nevertheless, Smorynski does not elaborate further on this ”philosoph- icalphase”inthelecturenotes,heratherfocusesmainlyonthemathematicalresultsthat havebuiltupnon-standardmodelsasamathematicalfieldinitsownright. The thesis strives to fill such a historical gap and provides a better picture of the philosophicalrootsofnon-standardmodelsofarithmetic,andtheirinfluenceonthenext mathematicaldevelopments. Todoso,wewilldiscussindetailontheimportanceofthephilosophicalphasebypre- sentingitsfeatureswithrespecttothemathematicalphase. WethenarguethatDedekind has to be considered, together with Skolem, as the forefather the non-standard models andthusviewedasamemberofthephilosophicalphase. Inparticular,wewillconsiderDedekind’slettertoKefersteinandhiscategoricalchar- acterisationofhissystem. Afterthat,wewilldiscussSkolem’sproofsoftheexistenceof non-standardmodelsandtheirrelationshipwithSkolem’sfinitistmathematicalcredo. Moreover, we will also argue for a possible third ”hybrid” phase which could be the attempt to recover from the mismatch between the scarce interest that philosophy haspaidtonon-standardmodelsoverthelast60years, andtheabundantmathematical resultsfromthe1960’son. Thisphasepossiblysetsoutfromthephilosophicalrelevance ofresultsconcerningnon-standardtodebatesinphilosophyofmathematics. 4[smorynski84,p.1] 5NotethatThoralfSkolemiscommonlycreditedwithbeingtheonewhodiscoverednon-standardmod- els.However,wewillarguethat,inthisrespect,Dedekindshouldbementionedalso. vii Overviewofthethesis In chapter 1 we present some introductory remarks about important distinctions that aredealtwithinthetext—suchasanalytic/syntheticreasoning,deductive/descriptive use of logic in mathematics, intended/unintended models — in order to put forth their roleinthediscussionofnon-standardmodelsofarithmetic(NMoAforshort). Inchapter2weconsiderDedekind’sworkwithrespecttoNMoA,especiallyhis”The Nature and the Meaning of Numbers” and one of the letter he addressed to Keferstein. We argue that in the letter to Keferstein we find the very first evidence of the existence of NMoA. Moreover, we illustrate Dedekind’s attempt to banish non-standard models inhisaxiomatizationofarithmeticviaemployingstatementsexpressibleinsecond-order logic. Inchapter3weexploreSkolem’soriginalproofoftheexistenceofNMoA,knownin the literature as ”ultrapower-like” construction, the impact that Skolem’s philosophical viewshadontheproofandthewaynon-standardmodelswerereceivedfromfollowing philosophers. In chapter 4 we outline the main features of the succeeding mathematical phase. In particular we focus on one mathematical result, viz. Tennenbaum’s Theorem, which could be the sparkle of the return of philosophical interest to the issue of non-standard models. In the appendix we provide the syntax and the semantics of first and second order logic. viii Acknowledgements This thesis would have never been conceived without the supervision of dr. Dutilh No- vaes. ShesuggestedmetheproblemthatIinvestigateinthisthesis,i.e.thephilosophical significance of the non-standard models of arithmetic. I would like to express my grati- tudetoherfortheencouragement,suggestions,andcriticism. I am also indebted to prof. Dick de Jongh who has done a very careful work of revi- siontothepreviousversionsofthisthesis. Muchoftheclarityofthepresentredactionis duetohissuggestions. Ialsowouldliketothankprof. SergioGalvanwhogavemethefirstcoursesinlogic, encouragedandhelpedmetogoabroadandcompletemyMaster,andprof. Alessandro GiordaniwhofirstintroducedmetothestudyoftheworkofRichardDedekind. Inoltre, vorrei ringraziare con grande affetto i miei genitori, Tina e Guido, e la mia caraSofietwzka,chemihannosempresupportatoe”sopportato”inquestianni. UnringraziamentospecialevaancheaPasqualina(dettaSheiluzziella),eatuttal’allegra brigata composta da Giannino, (ovvero Gianni o GianPorco), Cicciuzzo (detto anche il Commendatore),ilmagoPotter,Edo(ovveroPierre,dettoancheilDrago),BobGiovaDy- lan,FrancyRaiworld,Brennon-Brendon(dettoildottore),Micky-Smicky,LucaSambuca, SilviaBerluscona,EbevilOtutto,etuttiquellichemihannoaccompagnatoinquestidue anni. ix

Description:
1.7 Non-Standard models: an attempted definition pascolano sospingendosi sotto gli illesi palazzotti, . than a couple of pages on them; the only exception is Boolos' book where a seventeen .. a hybrid are, respectively, the reference to a formal theory, say T, formulated in the for- .. For a pre
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.