ebook img

Non-Invertible Dynamical Systems 1: Ergodic Theory Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps PDF

458 Pages·2021·4.818 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Invertible Dynamical Systems 1: Ergodic Theory Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps

MariuszUrbański,MarioRoy,SaraMunday Non-InvertibleDynamicalSystems De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 69/1 Mariusz Urbański, Mario Roy, Sara Munday Non-Invertible Dynamical Systems | Volume 1: Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps MathematicsSubjectClassification2010 37A05,37A25,37A30,37A35,37A40,37B10,37B25,37B40,37B65,37C05,37C20,37C40,37D20, 37D35,37E05,37E10 Authors Prof.Dr.MariuszUrbański Dr.SaraMunday UniversityofNorthTexas JohnCabotUniversity DepartmentofMathematics ViadellaLungara233 1155UnionCircle#311430 00165Rome Denton,TX76203-5017 Italy USA [email protected] [email protected] Prof.Dr.MarioRoy YorkUniversity GlendonCollege 2275BayviewAvenue Toronto,M4N3M6 Canada [email protected] ISBN978-3-11-070264-4 e-ISBN(PDF)978-3-11-070268-2 e-ISBN(EPUB)978-3-11-070275-0 ISSN0938-6572 LibraryofCongressControlNumber:2021940887 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | MariuszUrbańskidedicatesthisbooktohiswife,Irena. ÀmesparentsThérèseetJean-Guy,àmafamilleetàmesamis,sansquicelivren’aurait puvoirlavie...dufondducoeur,merci!Mario Preface Dynamicalsystemsandergodictheoryisarapidlyevolvingfieldofmathematicswith alargevarietyofsubfields,whichuseadvancedmethodsfromvirtuallyallareasof mathematics.Thesesubfieldscomprisebutarebynomeanslimitedto:abstracter- godic theory, topological dynamical systems, symbolic dynamical systems, smooth dynamical systems, holomorphic/complex dynamical systems, conformal dynam- ical systems, one-dimensional dynamical systems, hyperbolic dynamical systems, expandingdynamicalsystems,thermodynamicformalism,geodesicflows,Hamilto- niansystems,KAMtheory,billiards,algebraicdynamicalsystems,iteratedfunction systems,groupactions,andrandomdynamicalsystems. Allofthesebranchesofdynamicalsystemsaremutuallyintertwinedinmanyin- volvedways.Eachofthesebranchesnonethelessalsohasitsownuniquemethods andtechniques,inparticularembracingmethodswhicharisefromthefieldsofmath- ematicsthebranchiscloselyrelatedto.Forexample,complexdynamicsborrowsad- vancedmethodsfromcomplexanalysis,bothofoneandseveralvariables;geodesic flowsutilizemethodsfromdifferentialgeometry;andabstractergodictheoryandther- modynamicformalismrelyheavilyonmeasuretheoryandfunctionalanalysis. Indeed,itistrulyfascinatinghowlargethefieldofdynamicalsystemsisandhow manybranchesofmathematicsitoverlapswith.Inthisbook,wefocusonsomese- lectedsubfieldsofdynamicalsystems,primarilynoninvertibleones. Inthefirstvolume,wegiveintroductoryaccountsoftopologicaldynamicalsys- temsactingoncompactmetrizablespaces,offinite-statesymbolicdynamicalsystems, andofabstractergodictheoryofmeasure-theoreticdynamicalsystemsactingonprob- abilitymeasurespaces,thelatterincludingthemetricentropytheoryofKolmogorov andSinai.Moreadvancedtopicsincludeinfiniteergodictheory,generalthermody- namicformalism,andtopologicalentropyandpressure.Thisvolumealsoincludesa treatmentofseveralclassesofdynamicalsystems,whichareinterestingontheirown andwillbestudiedatgreaterlengthinthesecondvolume:weprovideafairlydetailed accountofdistanceexpandingmapsanddiscussShubexpandingendomorphisms, expansivemaps,andhomeomorphismsanddiffeomorphismsofthecircle. Thesecondvolumeissomewhatmoreadvancedandspecialized.Itopenswith asystematicaccountofthermodynamicformalismofHöldercontinuouspotentials foropentransitivedistanceexpandingsystems.Onechaptercomprisesnodynamics butratherisaconciseaccountoffractalgeometry,treatedfromthepointofviewof dynamicalsystems.Bothoftheseaccountsarelaterusedtostudyconformalexpand- ing repellers. Another topic exposed at length is that of thermodynamic formalism ofcountable-statesubshiftsoffinitetype.Relyingonthislatter,thetheoryofconfor- malgraphdirectedMarkovsystems,withtheirspecialsubclassofconformaliterated functionsystems,isdescribed.Here,inasimilarwaytothetreatmentofconformalex- pandingrepellers,themainfocusisonBowen’sformulafortheHausdorffdimension https://doi.org/10.1515/9783110702682-201 VIII | Preface ofthelimitsetandmultifractalanalysis.ArathershortexaminationofLasota–Yorke mapsofanintervalisalsoincludedinthissecondvolume. Thethirdvolumeisentirelydevotedtothestudyofthedynamics,ergodictheory, thermodynamicformalism,andfractalgeometryofrationalfunctionsoftheRiemann sphere.Wepresentafairlycompleteaccountofclassicalaswellasmoreadvanced topologicaltheoryofFatouandJuliasets.Nevertheless,primaryemphasisisplaced onmeasurabledynamicsgeneratedbyrationalfunctionsandfractalgeometryoftheir Juliasets.TheseincludethethermodynamicformalismofHöldercontinuouspoten- tialswithpressuregaps,thetheoryofSullivan’sconformalmeasures,invariantmea- suresandtheirdimensions,entropy,andLyapunovexponents.Wefurtherexaminein detailtheclassesofexpanding,subexpanding,andparabolicrationalfunctions.We alsoprovide,withproofs,severalofthefundamentaltoolsfromcomplexanalysisthat areusedincomplexdynamics.ThesecompriseMontel’sTheorem,Koebe’sDistortion TheoremsandRiemann–Hurwitzformulas,withtheirramifications. Invirtuallyeachchapterofthisbook,wedescribealargenumberofconcretese- lected examples illustrating the theory and serving as examples in other chapters. Also,eachchapterofthebookissuppliedwithanumberofexercises.Thesevaryin difficulty,fromveryeasyonesaskingtoverifyfairlystraightforwardlogicalstepsto moreadvancedonesenhancinglargelythetheorydevelopedinthechapter. ThisbookoriginatedfromthegraduatelecturesMariuszUrbańskideliveredatthe UniversityofNorthTexasintheyears2005–2010andthatSaraMundaytooknotesof. WiththeinvolvementofMarioRoy,thebookevolvedandgrewovermanyyears.The last2years(2020and2021)ofitswritingweremostdramaticandchallengingbecause oftheCOVID-19pandemic.Ourbookborrowswidelyfrommanysourcesincludingthe books[41,47,57].Weneverthelesstriedtokeepitasself-containedaspossible,avoid- ingtoreferthereadertoooftentospecificresultsfromspecialpapersorbooks.Toward thisend,anappendixcomprisingclassicalresults,mostlyfrommeasuretheory,func- tionalanalysisandcomplexanalysis,isincluded.Thebookcoversquiteamanytopics treatedwithvariousdegreesofcompleteness,noneofwhicharefullyexhaustedbe- causeoftheirsheerlargenessandtheircontinuousdynamicalgrowth. List of Figures :[ , ]→[ , ] Figure1.1 ThetentmapT 0 1 0 1.|2 :[ , ]→[ , ] = Figure1.2 ThemapTm 0 1 0 1,wherem 5.|3 :[ , ]→[ , ] Figure1.3 TheFareymapF 0 1 0 1.|5 :[ , ]→[ , ] Figure1.4 Minkowski’squestion-markfunctionQ 0 1 0 1.|6 Figure1.5 ThemapTisanorientation-preservinghomeomorphismoftheunitintervalthatfixes onlytheendpoints.Theverticaldottedlinesindicatetheintervals(Tn(△))n∈ℤ,where △:=[ , ( )] a T a .|29 Figure2.1 Ontheleft,Subcase2.1:(fj−n(x0),fj(x0))⊆(fk−n(x0),fk(x0)).Ontheright, Subcase2.2:fk−n(x0)∈(fj−n(x0),fj(x0)).|57 ,..., Figure4.1 Theactionofthefourcontractingsimilaritiesφ0 φ3ontheclosedunitsquare I2.|108 Figure4.2 IllustrationoftheballB(T(x),ξ)mappedundertheinversebranchT−1insidetheball x ( , ) Bx δ .|110 Figure4.3 ThemapTT−n1−1(x)sendstheballB(Tn(x),ξ)intotheballB(Tn−1(x),ξ),whichisinturn mapped(in,to)theballB(Tn−2(x),ξ)byTT−n1−2(x)andsoon,untilfinallyTx−1sendsusback insideBx ξ .|111 Figure8.1 Anexampleofanintervalexchangetransformation.|255 ( )=− Figure9.1 Thefunctionunderlyingentropy:k t tlogt.|281

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.