MariuszUrbański,MarioRoy,SaraMunday Non-InvertibleDynamicalSystems De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 69/1 Mariusz Urbański, Mario Roy, Sara Munday Non-Invertible Dynamical Systems | Volume 1: Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps MathematicsSubjectClassification2010 37A05,37A25,37A30,37A35,37A40,37B10,37B25,37B40,37B65,37C05,37C20,37C40,37D20, 37D35,37E05,37E10 Authors Prof.Dr.MariuszUrbański Dr.SaraMunday UniversityofNorthTexas JohnCabotUniversity DepartmentofMathematics ViadellaLungara233 1155UnionCircle#311430 00165Rome Denton,TX76203-5017 Italy USA [email protected] [email protected] Prof.Dr.MarioRoy YorkUniversity GlendonCollege 2275BayviewAvenue Toronto,M4N3M6 Canada [email protected] ISBN978-3-11-070264-4 e-ISBN(PDF)978-3-11-070268-2 e-ISBN(EPUB)978-3-11-070275-0 ISSN0938-6572 LibraryofCongressControlNumber:2021940887 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | MariuszUrbańskidedicatesthisbooktohiswife,Irena. ÀmesparentsThérèseetJean-Guy,àmafamilleetàmesamis,sansquicelivren’aurait puvoirlavie...dufondducoeur,merci!Mario Preface Dynamicalsystemsandergodictheoryisarapidlyevolvingfieldofmathematicswith alargevarietyofsubfields,whichuseadvancedmethodsfromvirtuallyallareasof mathematics.Thesesubfieldscomprisebutarebynomeanslimitedto:abstracter- godic theory, topological dynamical systems, symbolic dynamical systems, smooth dynamical systems, holomorphic/complex dynamical systems, conformal dynam- ical systems, one-dimensional dynamical systems, hyperbolic dynamical systems, expandingdynamicalsystems,thermodynamicformalism,geodesicflows,Hamilto- niansystems,KAMtheory,billiards,algebraicdynamicalsystems,iteratedfunction systems,groupactions,andrandomdynamicalsystems. Allofthesebranchesofdynamicalsystemsaremutuallyintertwinedinmanyin- volvedways.Eachofthesebranchesnonethelessalsohasitsownuniquemethods andtechniques,inparticularembracingmethodswhicharisefromthefieldsofmath- ematicsthebranchiscloselyrelatedto.Forexample,complexdynamicsborrowsad- vancedmethodsfromcomplexanalysis,bothofoneandseveralvariables;geodesic flowsutilizemethodsfromdifferentialgeometry;andabstractergodictheoryandther- modynamicformalismrelyheavilyonmeasuretheoryandfunctionalanalysis. Indeed,itistrulyfascinatinghowlargethefieldofdynamicalsystemsisandhow manybranchesofmathematicsitoverlapswith.Inthisbook,wefocusonsomese- lectedsubfieldsofdynamicalsystems,primarilynoninvertibleones. Inthefirstvolume,wegiveintroductoryaccountsoftopologicaldynamicalsys- temsactingoncompactmetrizablespaces,offinite-statesymbolicdynamicalsystems, andofabstractergodictheoryofmeasure-theoreticdynamicalsystemsactingonprob- abilitymeasurespaces,thelatterincludingthemetricentropytheoryofKolmogorov andSinai.Moreadvancedtopicsincludeinfiniteergodictheory,generalthermody- namicformalism,andtopologicalentropyandpressure.Thisvolumealsoincludesa treatmentofseveralclassesofdynamicalsystems,whichareinterestingontheirown andwillbestudiedatgreaterlengthinthesecondvolume:weprovideafairlydetailed accountofdistanceexpandingmapsanddiscussShubexpandingendomorphisms, expansivemaps,andhomeomorphismsanddiffeomorphismsofthecircle. Thesecondvolumeissomewhatmoreadvancedandspecialized.Itopenswith asystematicaccountofthermodynamicformalismofHöldercontinuouspotentials foropentransitivedistanceexpandingsystems.Onechaptercomprisesnodynamics butratherisaconciseaccountoffractalgeometry,treatedfromthepointofviewof dynamicalsystems.Bothoftheseaccountsarelaterusedtostudyconformalexpand- ing repellers. Another topic exposed at length is that of thermodynamic formalism ofcountable-statesubshiftsoffinitetype.Relyingonthislatter,thetheoryofconfor- malgraphdirectedMarkovsystems,withtheirspecialsubclassofconformaliterated functionsystems,isdescribed.Here,inasimilarwaytothetreatmentofconformalex- pandingrepellers,themainfocusisonBowen’sformulafortheHausdorffdimension https://doi.org/10.1515/9783110702682-201 VIII | Preface ofthelimitsetandmultifractalanalysis.ArathershortexaminationofLasota–Yorke mapsofanintervalisalsoincludedinthissecondvolume. Thethirdvolumeisentirelydevotedtothestudyofthedynamics,ergodictheory, thermodynamicformalism,andfractalgeometryofrationalfunctionsoftheRiemann sphere.Wepresentafairlycompleteaccountofclassicalaswellasmoreadvanced topologicaltheoryofFatouandJuliasets.Nevertheless,primaryemphasisisplaced onmeasurabledynamicsgeneratedbyrationalfunctionsandfractalgeometryoftheir Juliasets.TheseincludethethermodynamicformalismofHöldercontinuouspoten- tialswithpressuregaps,thetheoryofSullivan’sconformalmeasures,invariantmea- suresandtheirdimensions,entropy,andLyapunovexponents.Wefurtherexaminein detailtheclassesofexpanding,subexpanding,andparabolicrationalfunctions.We alsoprovide,withproofs,severalofthefundamentaltoolsfromcomplexanalysisthat areusedincomplexdynamics.ThesecompriseMontel’sTheorem,Koebe’sDistortion TheoremsandRiemann–Hurwitzformulas,withtheirramifications. Invirtuallyeachchapterofthisbook,wedescribealargenumberofconcretese- lected examples illustrating the theory and serving as examples in other chapters. Also,eachchapterofthebookissuppliedwithanumberofexercises.Thesevaryin difficulty,fromveryeasyonesaskingtoverifyfairlystraightforwardlogicalstepsto moreadvancedonesenhancinglargelythetheorydevelopedinthechapter. ThisbookoriginatedfromthegraduatelecturesMariuszUrbańskideliveredatthe UniversityofNorthTexasintheyears2005–2010andthatSaraMundaytooknotesof. WiththeinvolvementofMarioRoy,thebookevolvedandgrewovermanyyears.The last2years(2020and2021)ofitswritingweremostdramaticandchallengingbecause oftheCOVID-19pandemic.Ourbookborrowswidelyfrommanysourcesincludingthe books[41,47,57].Weneverthelesstriedtokeepitasself-containedaspossible,avoid- ingtoreferthereadertoooftentospecificresultsfromspecialpapersorbooks.Toward thisend,anappendixcomprisingclassicalresults,mostlyfrommeasuretheory,func- tionalanalysisandcomplexanalysis,isincluded.Thebookcoversquiteamanytopics treatedwithvariousdegreesofcompleteness,noneofwhicharefullyexhaustedbe- causeoftheirsheerlargenessandtheircontinuousdynamicalgrowth. List of Figures :[ , ]→[ , ] Figure1.1 ThetentmapT 0 1 0 1.|2 :[ , ]→[ , ] = Figure1.2 ThemapTm 0 1 0 1,wherem 5.|3 :[ , ]→[ , ] Figure1.3 TheFareymapF 0 1 0 1.|5 :[ , ]→[ , ] Figure1.4 Minkowski’squestion-markfunctionQ 0 1 0 1.|6 Figure1.5 ThemapTisanorientation-preservinghomeomorphismoftheunitintervalthatfixes onlytheendpoints.Theverticaldottedlinesindicatetheintervals(Tn(△))n∈ℤ,where △:=[ , ( )] a T a .|29 Figure2.1 Ontheleft,Subcase2.1:(fj−n(x0),fj(x0))⊆(fk−n(x0),fk(x0)).Ontheright, Subcase2.2:fk−n(x0)∈(fj−n(x0),fj(x0)).|57 ,..., Figure4.1 Theactionofthefourcontractingsimilaritiesφ0 φ3ontheclosedunitsquare I2.|108 Figure4.2 IllustrationoftheballB(T(x),ξ)mappedundertheinversebranchT−1insidetheball x ( , ) Bx δ .|110 Figure4.3 ThemapTT−n1−1(x)sendstheballB(Tn(x),ξ)intotheballB(Tn−1(x),ξ),whichisinturn mapped(in,to)theballB(Tn−2(x),ξ)byTT−n1−2(x)andsoon,untilfinallyTx−1sendsusback insideBx ξ .|111 Figure8.1 Anexampleofanintervalexchangetransformation.|255 ( )=− Figure9.1 Thefunctionunderlyingentropy:k t tlogt.|281