ebook img

Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology PDF

500 Pages·2013·2.894 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology

more information – www.cambridge.org/9781107034136 Non-HausdorffTopologyandDomainTheory This unique book on modern topology looks well beyond traditional treatises, and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topol- ogyisalmostneverHausdorff.Forthefirsttimeinasinglevolume,thisbookcovers basic material on metric and topological spaces, advanced material on complete par- tialorders,Stoneduality,stablecompactness,quasi-metricspaces,andmuchmore.An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness,completeness)andformsacompleteintroductorycoursebyitself. Graduate students and researchers alike will enjoy exploring this treasure trove of results.Fullproofsaregiven,aswellasmotivatingideas,clearexplanations,illuminat- ingexamples,applicationexercises,andsomemorechallengingproblemsforadvanced readers. JEAN GOUBAULT-LARRECQ is Full Professor of Computer Science at Ecole Normale Supérieure de Cachan, France. He obtained his Ph.D. in 1993 from Ecole Polytechniqueinthefieldofautomateddeduction,andsincethenhehashadanactive careerinseveralfieldsofcomputerscience:logic,computersecurity,semantics,dom- ain theory, and probabilistic and non-deterministic systems. He is currently heading teamSECSI(securityofinformationsystems)atINRIA,France’snationalinstitutefor researchincomputerscienceandcontrol.Heistherecipientofthe2011CNRSSilver Medalinthefieldofcomputerscienceanditsinteractions.Thisisthehighestscientific distinctionincomputerscienceinFrance. NEW MATHEMATICAL MONOGRAPHS EditorialBoard BélaBollobás,WilliamFulton,AnatoleKatok,FrancesKirwan,PeterSarnak, BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry Non-Hausdorff Topology and Domain Theory JEAN GOUBAULT-LARRECQ EcoleNormaleSupérieuredeCachan,France CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107034136 ©JeanGoubault-Larrecq2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-03413-6Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents 1 Introduction 1 2 Elementsofsettheory 4 2.1 Foundations 4 2.2 Finiteness,countability 6 2.3 Ordertheory 8 2.4 TheAxiomofChoice 15 3 Afirsttouroftopology:metricspaces 18 3.1 Metricspaces 18 3.2 Convergence,limits 20 3.3 Compactsubsets 25 3.4 Completemetricspaces 33 3.5 Continuousfunctions 37 4 Topology 46 4.1 Topology,topologicalspaces 46 4.2 Orderandtopology 53 4.3 Continuity 62 4.4 Compactness 67 4.5 Products 74 4.6 Coproducts 80 4.7 Convergenceandlimits 82 4.8 Localcompactness 91 4.9 Subspaces 95 4.10 Homeomorphisms,embeddings,quotients,retracts 97 4.11 Connectedness 106 4.12 AbitofcategorytheoryI 111 5 Approximationandfunctionspaces 120 5.1 Theway-belowrelation 120 5.2 Thelatticeofopensubsetsofaspace 140 v vi Contents 5.3 Spacesofcontinuousmaps 149 5.4 Theexponentialtopology 151 5.5 AbitofcategorytheoryII 169 5.6 C-generatedspaces 180 5.7 bc-domains 194 6 Metrics,quasi-metrics,hemi-metrics 203 6.1 Metrics,hemi-metrics,andopenballs 203 6.2 ContinuousandLipschitzmaps 209 6.3 Topologicalequivalence,hemi-metrizability,metrizability 214 6.4 Coproducts,quotients 236 6.5 Products,subspaces 239 6.6 Functionspaces 241 6.7 Compactnessandsymcompactness 251 7 Completeness 260 7.1 Limits,d-limits,andCauchynets 260 7.2 Astrongformofcompleteness:Smyth-completeness 267 7.3 Formalballs 279 7.4 Aweakformofcompleteness:Yoneda-completeness 288 7.5 Theformalballcompletion 311 7.6 Choquet-completeness 323 7.7 Polishspaces 334 8 Soberspaces 341 8.1 FramesandStoneduality 341 8.2 Soberspacesandsobrification 351 8.3 TheHofmann–MisloveTheorem 364 8.4 Colimitsandlimitsofsoberspaces 383 9 Stablycompactspacesandcompactpospaces 397 9.1 Stablylocallycompactspaces,stablycompactspaces 397 9.2 Coproductsandretractsofstablycompactspaces 411 9.3 Productsandsubspacesofstablycompactspaces 413 9.4 Patch-continuous,perfectmaps 419 9.5 Spectralspaces 423 9.6 Bifinitedomains 440 9.7 Noetherianspaces 453 References 475 Notationindex 480 Index 484 1 Introduction Purpose This book is an introduction to some of the basic concepts of topology,especiallyofnon-Hausdorff topology.Iwillofcourseexplainwhat it means (Definition 4.1.12). The important point is that traditional topology textbooksassumetheHausdorffseparationconditionfromtheverystart,and contain very little information on non-Hausdorff spaces. But the latter are importantalreadyinalgebraicgeometry,andcrucialinfieldssuchasdomain theory. Conversely,domaintheory(AbramskyandJung,1994;Gierzetal.,2003), whicharosefromlogicandcomputerscience,startedasanoutgrowthofthe- ories of order. Progress in this domain rapidly required a lot of material on (non-Hausdorff)topologies. After about 40 years of domain theory, one is forced to recognize that topology and domain theory have been beneficial to each other. I’ve already mentioned what domain theory owes to topology. Conversely, in several respects,domaintheory,inabroadsense,istopologydoneright. This book is an introduction to both fields, dealt with as one. This seems to fill a gap in the literature, while bringing them forth in a refreshing perspective. Secondarypurpose Thisbookisself-contained.Mymaininterest,though,as anauthor,wastoproduceauniquereferenceforthekindofresultsintopology and domain theory that I needed in research I started in 2004, on semantic modelsofmixednon-deterministicandprobabilisticchoice.Thegoalquickly grewoutofproportion,andwillthereforeoccupyseveralvolumes.Thecurrent book can be seen as the preliminaries for other books on these other topics. Some colleagues of mine, starting with Professor Alain Finkel, have stressed that these preliminaries are worthy of interest, independently of any specific application. 1 2 Introduction Teaching This book is meant to be used as a reference. My hope is that it shouldbeusefultoresearchersandtopeoplewhoarecurioustoreadabouta modernviewofpoint-settopology.Itdidnotariseaslecturenotes,andIdon’t thinkitcanbeusedassuchdirectly.Ifyouplanonusingthisbookasabasis for lectures, you should extract a few selected topics. Think of yourself as a scriptwriterandthisbookasanovel,andpretendthatyourjobistoproducea shorterscriptforafeature-lengthmovie,andskipthelessimportantsubplots. Exercises Therearemanyexercises,spreadoverthewholetext.Someofthem aremeantfortraining,i.e.,tohelpyouunderstandnotionsbetter,tomakeyou morecomfortablewithdefinitionsandtheoremsthatwehavejustseen.Some othersaretheretohelpyouunderstandnotionsinadeeperway,ortogofurther. Thisistraditionalinmathematicaltextbooks.Itisthereforeprofitabletoread allexercises:thoseofthesecondkindinparticularstateadditionaltheorems, whichyoucanproveforyourself(sometimeswiththehelpofhints),butdonot needto.Itwillhappenthatnotonlysolutionsofexercisesbutalsosomeproofs of theorems will depend on results we shall have seen in previous exercises. Thereisnopressureonyoutoactuallydoanyexercise,andyoucandecideto takethemasameresourceofadditionalinformation. What is not covered Topology is an extremely rich topic, and I could not coverallsubtopicsinabookofreasonablesize.(Notwithstandingthefactthat Icertainlydonotknoweverythingintopology.)Idecidedtomakeaselection among those subtopics that pleased me most. Some other topics were neces- sarilyleftout,despitethembeingequallyinteresting.Forexample,algebraic topology willnot be touched upon at all.Uniform and quasi-uniform spaces, bitopological spaces, Lindelöf spaces, Souslin spaces, and topological group theorywereleftoutaswell.Topologicalconvexity,topologicalmeasuretheory, hyperspaces,andpowerdomainswillbetreatedinfurthervolumes. Dependencies Readingu ←vas“vdependsonu,”thestructureofthebook isasfollows.Dashedarrowsmarkweakerdependencies.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.