ebook img

Non-Gaussian Statistical Communication Theory PDF

652 Pages·6.264 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Gaussian Statistical Communication Theory

NON-GAUSSIAN STATISTICAL COMMUNICATION THEORY IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard LajosHanzo,EditorinChief R. Abhari M.El-Hawary O. P.Malik J. Anderson B-M. Haemmerli S. Nahavandi G. W. Arnold M.Lanzerotti T. Samad F.Canavero D.Jacobson G. Zobrist KennethMoore,DirectorofIEEEBookandInformationServices(BIS) IEEEInformationTheorySociety,Sponsor NON-GAUSSIAN STATISTICAL COMMUNICATION THEORY DAVID MIDDLETON Copyright(cid:1)2012bytheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved. PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwritten permissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetothe CopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbe addressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030, (201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompleteness ofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensales materials.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshould consultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossof profitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,or otherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStates at(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsite atwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: PrintISBN:9780470948477 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 To: William A. Von Winkle (1930–2007), Inspiring Director ofResearch (NUSC), andloyal friend; and tomy Wife, JoanBartlett Middleton, who provided theessential supportand encouragement needed increatingthis book and infulfillingmy life. CONTENTS Foreword xv VisualizingtheInvisible xvii Acknowledgments xxi AbouttheAuthor xxiii Editor’sNote xxv Introduction 1 1 ReceptionasaStatisticalDecisionProblem 15 1.1 SignalDetectionandEstimation, 15 1.2 SignalDetectionandEstimation, 17 1.2.1 Detection, 17 1.2.2 TypesofExtraction, 20 1.2.3 OtherReceptionProblems, 21 1.3 TheReceptionSituationinGeneralTerms, 22 1.3.1 Assumptions:Space–TimeSampling, 22 1.3.2 TheDecisionRule, 25 1.3.3 TheDecisionProblem, 26 1.3.4 TheGenericSimilarityofDetectionandExtraction, 27 1.4 SystemEvaluation, 27 1.4.1 EvaluationFunctions, 27 1.4.2 SystemComparisonsandErrorProbabilities, 30 1.4.3 Optimization:BayesSystems, 31 1.4.4 Optimization:MinimaxSystems, 32 1.5 ASummaryofBasicDefinitionsandPrincipalTheorems, 35 1.5.1 SomeGeneralPropertiesofOptimumDecisionRules, 35 1.5.2 Definitions, 36 1.5.3 PrincipalTheorems, 37 viii CONTENTS 1.5.4 Remarks:PriorProbabilities,CostAssignments,andSystem Invariants, 38 1.6 Preliminaries:BinaryBayesDetection, 40 1.6.1 FormulationI:BinaryOn–OffSignalDetection, 42 1.6.2 TheAverageRisk, 43 1.6.3 CostAssignments, 43 1.6.4 ErrorProbabilities, 45 1.7 OptimumDetection:On–OffOptimumProcessingAlgorithms, 46 1.7.1 TheLogarithmicGLRT, 48 1.7.2 RemarksontheBayesOptimalityoftheGLR, 48 1.8 SpecialOn–OffOptimumBinarySystems, 50 1.8.1 Neyman–PearsonDetectionTheory, 50 1.8.2 TheIdealObserverDetectionSystem, 51 1.8.3 MinimaxDetectors, 52 1.8.4 MaximumAposteriori(MAP)DetectorsfromaBayesian Viewpoint, 53 1.8.5 BayesianSequentialDetectors, 57 1.9 OptimumDetection:On–OffPerformanceMeasuresandSystem Comparisons, 57 1.9.1 ErrorProbabilities:OptimumSystems, 58 1.9.2 ErrorProbabilities:SuboptimumSystems, 65 1.9.3 DecisionCurvesandSystemComparisons, 66 1.10 BinaryTwo-SignalDetection:DisjointandOverlappingHypothesis Classes, 69 1.10.1 DisjointSignalClasses, 69 1.10.2 OverlappingHypothesisClasses, 70 1.11 ConcludingRemarks, 73 References, 74 2 Space–TimeCovariancesandWaveNumberFrequencySpectra: I.NoiseandSignalswithContinuousandDiscreteSampling 77 2.1 InhomogeneousandNonstationarySignalandNoiseFieldsI: Waveforms,BeamTheory,Covariances,andIntensitySpectra, 78 2.1.1 SignalNormalization, 79 2.1.2 InhomogeneousNonstationary(Non-WS-HS)Noise Covariances, 80 2.1.3 NarrowbandFields, 83 2.1.4 NoiseandSignalFieldCovariances:NarrowbandCases, 88 2.2 ContinuousSpace–TimeWiener–KhintchineRelations, 91 2.2.1 Directly Sampled Approximation of the W–Kh Relations (Hom-Stat Examples), 93 2.2.2 ExtendedWiener–KhintchineTheorems:Continuous InhomogeneousandNonstationaryRandom(Scalar)Fields, 95 2.2.3 TheImportantSpecialCaseofHomogeneous—Stationary Fields—FiniteandInfiniteSamples, 100 2.3 TheW–KhRelationsforDiscreteSamplesintheNon-Hom-Stat Situation, 102 2.3.1 TheAmplitudeSpectrumforDiscreteSamples, 102 2.3.2 PeriodicSampling, 107 CONTENTS ix 2.4 TheWiener–KhintchineRelationsforDiscretelySampledRandom Fields, 108 2.4.1 DiscreteHom-StatWiener–KhintchineTheorem: PeriodicSamplingandFiniteandInfiniteSamples, 110 2.4.2 Comments, 112 2.5 ApertureandArrays—I:AnIntroduction, 115 2.5.1 Transmission:AperturesandTheirFourierEquivalents, 116 2.5.2 Transmission:ThePropagatingFieldandItsSource Function, 120 2.5.3 PointArrays:DiscreteSpatialSampling, 126 2.5.4 Reception, 129 2.5.5 NarrowbandSignalsandFields, 134 2.5.6 SomeGeneralObservations, 137 2.6 ConcludingRemarks, 138 References, 139 3 OptimumDetection,Space–TimeMatchedFilters,andBeam ForminginGaussianNoiseFields 141 3.1 OptimumDetectionI:SelectedGaussianPrototypes—Coherent Reception, 142 3.1.1 OptimumCoherentDetection.CompletelyKnown DeterministicSignalsinGaussNoise, 142 3.1.2 Performance, 146 3.1.3 ArrayProcessingII:BeamFormingwithLinearArrays, 150 3.2 OptimumDetectionII:SelectedGaussianPrototypes—Incoherent Reception, 154 3.2.1 IncoherentDetection:I.NarrowbandDeterministic Signals, 154 3.2.2 IncoherentDetectionII.DeterministicNarrowbandSignals withSlowRayleighFading, 169 3.2.3 IncoherentDetectionIII:NarrowbandEquivalentEnvelope Inputs—Representations, 172 3.3 OptimalDetectionIII:SlowlyFluctuatingNoise Backgrounds, 176 3.3.1 CoherentDetection, 176 3.3.2 NarrowbandIncoherentDetectionAlgorithms, 180 3.3.3 IncoherentDetectionofBroadbandSignalsinNormal Noise, 183 3.4 BayesMatchedFiltersandTheirAssociatedBilinearandQuadratic Forms,I, 188 3.4.1 CoherentReception:CausalMatchedFilters(Type1), 190 3.4.2 IncoherentReception:CausalMatchedFilters(Type1), 192 3.4.3 IncoherentReception-RealizableMatchedFilters;Type2, 195 3.4.4 Wiener–KolmogoroffFilters, 198 3.4.5 Extensions:Clutter,Reverberation,andAmbientNoise, 200 3.4.6 MatchedFiltersandTheirSeparationinSpace andTimeI, 202 3.4.7 SolutionsoftheDiscreteIntegralEquations, 207 3.4.8 SummaryRemarks, 214 x CONTENTS 3.4.9 Signal-to-NoiseRatios,ProcessingGains,andMinimum DetectableSignals.I, 214 3.5 BayesMatchedFiltersintheWaveNumber–Frequency Domain, 219 3.5.1 FourierTransformsofDiscreteSeries, 219 3.5.2 IndependentBeamFormingandTemporal Processing, 230 3.6 ConcludingRemarks, 235 References, 235 4 MultipleAlternativeDetection 239 4.1 Multiple-AlternativeDetection:TheDisjointCases, 239 4.1.1 Detection, 240 4.1.2 MinimizationoftheAverageRisk, 242 4.1.3 GeometricInterpretation, 244 4.1.4 Examples, 245 4.1.5 ErrorProbabilities,AverageRisk,andSystem Evaluation, 250 4.1.6 AnExample, 253 4.2 OverlappingHypothesisClasses, 254 4.2.1 Reformulation, 255 4.2.2 MinimizationoftheAverageRiskforOverlappingHypothesis Classes, 257 4.2.3 Simple(Kþ1)-aryDetection, 259 4.2.4 ErrorProbabilities,AverageandBayesRisk,andSystem Evaluations, 260 4.3 DetectionwithDecisionsRejection:NonoverlappingSignal Classes, 262 4.3.1 Optimum(Kþ1)-aryDecisionswithRejection, 264 4.3.2 Optimum(Kþ1)-aryDecisionwithRejection, 265 4.3.3 ASimpleCostAssignment, 266 4.3.4 Remarks, 267 References, 270 5 BayesExtractionSystems:SignalEstimationandAnalysis, p(H )=1 271 1 5.1 DecisionTheoryFormulation, 272 5.1.1 NonrandomizedDecisionRulesandAverage Risk, 272 5.1.2 BayesExtractionWithaSimpleCostFunction, 274 5.1.3 BayesExtractionWithaQuadraticCostFunction, 278 5.1.4 FurtherProperties, 281 5.1.5 OtherCostFunctions, 283 5.2 CoherentEstimationofAmplitude(DeterministicSignalsandNormal Noise,p(H )¼1), 287 1 5.2.1 CoherentEstimationofSignalAmplitudeQuadraticCost Function, 287 5.2.2 CoherentEstimationofSignalAmplitude(SimpleCost Functions), 290 CONTENTS xi 5.2.3 Estimationsby(Real)uFilters, 291 5.2.4 BiasedandUnbiasedEstimates, 293 5.3 IncoherentEstimationofSignalAmplitude(DeterministicSignals andNormalNoise,p(H )¼1), 294 1 5.3.1 QuadraticCostFunction, 294 5.3.2 “Simple”CostFunctionsSCF (IncoherentEstimation), 298 1 5.4 WaveformEstimation(RandomFields), 300 5.4.1 NormalNoiseSignalsinNormalNoiseFields (QuadraticCostFunction), 300 5.4.2 NormalNoiseSignalsinNormalNoiseFields (“Simple”CostFunctions), 301 5.5 SummaryRemarks, 304 References, 305 6 JointDetectionandEstimation,p(H )(cid:1)1:I.Foundations 307 1 6.1 JointDetectionandEstimationunderPriorUncertainty½pðH Þ(cid:1)1(cid:2): 1 Formulation, 309 6.1.1 Case1:NoCoupling, 312 6.1.2 Case2:Coupling, 314 6.2 OptimalEstimation[p(H )(cid:1)1]:NoCoupling, 315 1 6.2.1 QuadraticCostFunction:MMSEandBayesRisk, 316 6.2.2 SimpleCostFunctions:UMLEandBayesRisk, 319 6.3 SimultaneousJointDetectionandEstimation: GeneralTheory, 326 6.3.1 TheGeneralCase:StrongCoupling, 326 6.3.2 SpecialCasesI:BayesDetectionandEstimationWithWeak Coupling, 331 6.3.3 SpecialCasesII:FurtherDiscussionofg* forWeakor p<1jQCF NoCoupling, 333 6.3.4 EstimatorBiasðp(cid:1)1Þ, 336 6.3.5 RemarksonIntervalEstimation,pðH Þ(cid:1)1, 338 1 6.3.6 DetectionProbabilities, 339 6.3.7 WaveformEstimationðp(cid:1)1Þ:CoupledandUncoupledD andE, 341 6.3.8 ExtensionsandModifications, 342 6.3.9 SummaryRemarks, 345 6.4 JointDandE:Examples–EstimationofSignalAmplitudes [p(H )(cid:1)1], 350 1 6.4.1 AmplitudeEstimation,p(H )¼1, 352 1 6.4.2 BayesEstimatorsandBayesError,pðH Þ(cid:1)1, 355 1 6.4.3 PerformanceDegradation,p<1, 358 6.4.4 AcceptanceorRejectionoftheEstimator:Detection Probabilities, 367 6.4.5 RemarksontheEstimationofSignal IntensityI (cid:3)a2, 371 o o 6.5 SummaryRemarks,p(H) (cid:1)1:I—Foundations, 378 1 References, 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.