Table Of ContentN -A L O
ON RCHIMEDEAN INEAR PERATORS
A
AND PPLICATIONS
No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or
by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no
expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of information
contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.
N -A L O
ON RCHIMEDEAN INEAR PERATORS
A
AND PPLICATIONS
TOKA DIAGANA
NovaSciencePublishers,Inc.
NewYork
(cid:13)c 2009byNovaSciencePublishers,Inc.
Allrightsreserved.Nopartofthisbookmaybereproduced,storedinaretrievalsystemortransmittedinany
formorbyanymeans:electronic,electrostatic,magnetic,tape,mechanicalphotocopying,recordingor
otherwisewithoutthewrittenpermissionofthePublisher.
Forpermissiontousematerialfromthisbookpleasecontactus:
Telephone631-231-7269;Fax631-231-8175
WebSite:http://www.novapublishers.com
NOTICETOTHEREADER
ThePublisherhastakenreasonablecareinthepreparationofthisbook,butmakesnoexpressedorimplied
warrantyofanykindandassumesnoresponsibilityforanyerrorsoromissions.Noliabilityisassumedfor
incidentalorconsequentialdamagesinconnectionwithorarisingoutofinformationcontainedinthisbook.
ThePublishershallnotbeliableforanyspecial,consequential,orexemplarydamagesresulting,inwholeor
inpart,fromthereaders’useof,orrelianceupon,thismaterial.
Independentverificationshouldbesoughtforanydata,adviceorrecommendationscontainedinthisbook. In
addition,noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsorproperty
arisingfromanymethods,products,instructions,ideasorotherwisecontainedinthispublication.
Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationwithregardtothesubjectmatter
coverherein.ItissoldwiththeclearunderstandingthatthePublisherisnotengagedinrenderinglegalorany
otherprofessionalservices.Iflegal,medicaloranyotherexpertassistanceisrequired,theservicesofa
competentpersonshouldbesought.FROMADECLARATIONOFPARTICIPANTSJOINTLYADOPTED
BYACOMMITTEEOFTHEAMERICANBARASSOCIATIONANDACOMMITTEEOF
PUBLISHERS.
LibraryofCongressCataloging-in-PublicationData
Availableuponrequest
ISBN978-1-61470-561-1 (eBook)
PublishedbyNovaScience Publishers,Inc. <New York
InmemoryofMabayeGalledou,
mygrandmother
Contents
Preface .............................................................. xi
1 Non-ArchimedeanValuedFields ..................................... 1
1.1 Introduction...................................................... 1
1.2 Non-ArchimedeanValuedFields .................................... 2
1.2.1 BasicDefinitions............................................ 2
1.2.2 Thet-VectorSpaceKt ....................................... 5
1.3 ConstructionofQ ................................................ 6
p
1.3.1 Introduction ................................................ 6
1.3.2 TheFieldQ ............................................... 6
p
1.3.3 Convergence ofPowerSeriesoverQ .......................... 8
p
1.4 ConstructionofK((x))............................................. 9
1.5 BibliographicalNotes.............................................. 10
2 Non-ArchimedeanBanachandHilbertSpaces ......................... 11
2.1 Non-ArchimedeanBanachSpaces ................................... 11
2.1.1 BasicDefinitions............................................ 11
2.1.2 ExamplesofNon-ArchimedeanBanachSpaces .................. 12
2.2 FreeBanachSpaces ............................................... 13
2.2.1 Definitions ................................................. 13
2.2.2 Examples .................................................. 13
2.3 Non-ArchimedeanHilbertSpaces.................................... 14
2.3.1 Introduction ................................................ 14
2.3.2 Non-ArchimedeanHilbertSpaces.............................. 14
2.3.3 TheHilbertSpaceEω ×Eω ×...×Eω ........................ 16
1 2 t
2.4 BibliographicalNotes.............................................. 18
3 Non-ArchimedeanBoundedLinearOperators ......................... 19
3.1 Introduction...................................................... 19
3.2 Bounded LinearOperatorsonNon-ArchimedeanBanachSpaces ......... 19
viii TokaDiagana
3.2.1 BasicDefinitions............................................ 20
3.2.2 Examples .................................................. 21
3.2.3 TheBanachAlgebraB(X) .................................... 22
3.2.4 FurtherPropertiesofBounded LinearOperators.................. 22
3.3 Bounded LinearOperatorsonNon-ArchimedeanHilbertSpaces.......... 25
3.3.1 Introduction ................................................ 25
3.3.2 RepresentationofBounded OperatorsByInfiniteMatrices......... 25
3.3.3 ExistenceoftheAdjoint...................................... 26
3.3.4 ExamplesofBounded OperatorswithnoAdjoint................. 28
3.4 PerturbationofBases .............................................. 29
3.4.1 Example ................................................... 31
3.5 Hilbert-SchmidtOperators.......................................... 32
3.5.1 BasicDefinitions............................................ 32
3.5.2 FurtherPropertiesofHilbert-SchmidtOperators.................. 38
3.5.3 CompletelyContinuousOperators ............................. 39
3.5.4 Trace...................................................... 40
3.5.5 Examples .................................................. 40
3.6 OpenProblems ................................................... 42
3.7 BibliographicalNotes.............................................. 42
4 Non-ArchimedeanUnboundedLinearOperators ....................... 43
4.1 Introduction...................................................... 43
4.2 BasicDefinitions.................................................. 43
4.2.1 Example ................................................... 44
4.2.2 ExistenceoftheAdjoint...................................... 45
4.2.3 ExamplesofUnbounded OperatorsWithnoAdjoint .............. 45
4.3 ClosedLinearOperatorsonEω...................................... 46
4.4 DiagonalOperatorsonEω .......................................... 49
4.5 OpenProblems ................................................... 51
4.6 BibliographicalNotes.............................................. 51
5 Non-ArchimedeanBilinearForms.................................... 53
5.1 Introduction...................................................... 53
5.2 BasicDefinitions.................................................. 53
5.2.1 ContinuousLinearFunctionalsonEω .......................... 53
5.2.2 Bounded BilinearFormsonEω×Eω ........................... 55
5.2.3 Unbounded BilinearFormsonEω×Eω......................... 56
5.3 ClosedandClosablenon-Archimedean BilinearForms.................. 58
5.3.1 ClosednessoftheFormSum .................................. 59
5.3.2 Constructionofanon-Archimedean HilbertSpaceUsingQuadratic
Forms ..................................................... 61
Contents ix
5.3.3 FurtherPropertiesoftheClosure............................... 62
5.4 RepresentationofBilinearFormsonEω×Eω byLinearOperators ........ 63
5.5 BibliographicalNotes.............................................. 65
6 FunctionsofLinearOperatorsonEω ................................. 67
6.1 Introduction...................................................... 67
6.2 ProductsandSumsofDiagonalOperators............................. 67
6.3 IntegerPowersofDiagonalOperators ................................ 69
6.4 FunctionsofSelf-AdjointOperators.................................. 72
6.5 FunctionsofSomeSymmetricSquareMatricesOverQ ×Q ........... 73
p p
6.5.1 ThePowersoftheMatrixT ................................... 75
6.5.2 ExponentialoftheMatrixT .................................. 75
6.6 OpenProblems ................................................... 76
6.7 BibliographicalNotes.............................................. 76
7 One-ParameterFamilyofBoundedLinearOperatorsonFreeBanachSpaces 77
7.1 Introduction...................................................... 77
7.2 BasicDefinitions.................................................. 78
7.3 Propertiesofnon-ArchimedeanC -Groups ............................ 79
0
7.4 ExistenceofSolutionstoSomep-adicDifferentialEquations............. 83
7.5 OpenProblems ................................................... 86
7.6 BibliographicalNotes.............................................. 86
References ........................................................... 87
Index................................................................ 91