ebook img

Non-Archimedean linear operators and applications PDF

107 Pages·2009·1.052 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Archimedean linear operators and applications

N -A L O ON RCHIMEDEAN INEAR PERATORS A AND PPLICATIONS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. N -A L O ON RCHIMEDEAN INEAR PERATORS A AND PPLICATIONS TOKA DIAGANA NovaSciencePublishers,Inc. NewYork (cid:13)c 2009byNovaSciencePublishers,Inc. Allrightsreserved.Nopartofthisbookmaybereproduced,storedinaretrievalsystemortransmittedinany formorbyanymeans:electronic,electrostatic,magnetic,tape,mechanicalphotocopying,recordingor otherwisewithoutthewrittenpermissionofthePublisher. Forpermissiontousematerialfromthisbookpleasecontactus: Telephone631-231-7269;Fax631-231-8175 WebSite:http://www.novapublishers.com NOTICETOTHEREADER ThePublisherhastakenreasonablecareinthepreparationofthisbook,butmakesnoexpressedorimplied warrantyofanykindandassumesnoresponsibilityforanyerrorsoromissions.Noliabilityisassumedfor incidentalorconsequentialdamagesinconnectionwithorarisingoutofinformationcontainedinthisbook. ThePublishershallnotbeliableforanyspecial,consequential,orexemplarydamagesresulting,inwholeor inpart,fromthereaders’useof,orrelianceupon,thismaterial. Independentverificationshouldbesoughtforanydata,adviceorrecommendationscontainedinthisbook. In addition,noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsorproperty arisingfromanymethods,products,instructions,ideasorotherwisecontainedinthispublication. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationwithregardtothesubjectmatter coverherein.ItissoldwiththeclearunderstandingthatthePublisherisnotengagedinrenderinglegalorany otherprofessionalservices.Iflegal,medicaloranyotherexpertassistanceisrequired,theservicesofa competentpersonshouldbesought.FROMADECLARATIONOFPARTICIPANTSJOINTLYADOPTED BYACOMMITTEEOFTHEAMERICANBARASSOCIATIONANDACOMMITTEEOF PUBLISHERS. LibraryofCongressCataloging-in-PublicationData Availableuponrequest ISBN978-1-61470-561-1 (eBook) PublishedbyNovaScience Publishers,Inc. <New York InmemoryofMabayeGalledou, mygrandmother Contents Preface .............................................................. xi 1 Non-ArchimedeanValuedFields ..................................... 1 1.1 Introduction...................................................... 1 1.2 Non-ArchimedeanValuedFields .................................... 2 1.2.1 BasicDefinitions............................................ 2 1.2.2 Thet-VectorSpaceKt ....................................... 5 1.3 ConstructionofQ ................................................ 6 p 1.3.1 Introduction ................................................ 6 1.3.2 TheFieldQ ............................................... 6 p 1.3.3 Convergence ofPowerSeriesoverQ .......................... 8 p 1.4 ConstructionofK((x))............................................. 9 1.5 BibliographicalNotes.............................................. 10 2 Non-ArchimedeanBanachandHilbertSpaces ......................... 11 2.1 Non-ArchimedeanBanachSpaces ................................... 11 2.1.1 BasicDefinitions............................................ 11 2.1.2 ExamplesofNon-ArchimedeanBanachSpaces .................. 12 2.2 FreeBanachSpaces ............................................... 13 2.2.1 Definitions ................................................. 13 2.2.2 Examples .................................................. 13 2.3 Non-ArchimedeanHilbertSpaces.................................... 14 2.3.1 Introduction ................................................ 14 2.3.2 Non-ArchimedeanHilbertSpaces.............................. 14 2.3.3 TheHilbertSpaceEω ×Eω ×...×Eω ........................ 16 1 2 t 2.4 BibliographicalNotes.............................................. 18 3 Non-ArchimedeanBoundedLinearOperators ......................... 19 3.1 Introduction...................................................... 19 3.2 Bounded LinearOperatorsonNon-ArchimedeanBanachSpaces ......... 19 viii TokaDiagana 3.2.1 BasicDefinitions............................................ 20 3.2.2 Examples .................................................. 21 3.2.3 TheBanachAlgebraB(X) .................................... 22 3.2.4 FurtherPropertiesofBounded LinearOperators.................. 22 3.3 Bounded LinearOperatorsonNon-ArchimedeanHilbertSpaces.......... 25 3.3.1 Introduction ................................................ 25 3.3.2 RepresentationofBounded OperatorsByInfiniteMatrices......... 25 3.3.3 ExistenceoftheAdjoint...................................... 26 3.3.4 ExamplesofBounded OperatorswithnoAdjoint................. 28 3.4 PerturbationofBases .............................................. 29 3.4.1 Example ................................................... 31 3.5 Hilbert-SchmidtOperators.......................................... 32 3.5.1 BasicDefinitions............................................ 32 3.5.2 FurtherPropertiesofHilbert-SchmidtOperators.................. 38 3.5.3 CompletelyContinuousOperators ............................. 39 3.5.4 Trace...................................................... 40 3.5.5 Examples .................................................. 40 3.6 OpenProblems ................................................... 42 3.7 BibliographicalNotes.............................................. 42 4 Non-ArchimedeanUnboundedLinearOperators ....................... 43 4.1 Introduction...................................................... 43 4.2 BasicDefinitions.................................................. 43 4.2.1 Example ................................................... 44 4.2.2 ExistenceoftheAdjoint...................................... 45 4.2.3 ExamplesofUnbounded OperatorsWithnoAdjoint .............. 45 4.3 ClosedLinearOperatorsonEω...................................... 46 4.4 DiagonalOperatorsonEω .......................................... 49 4.5 OpenProblems ................................................... 51 4.6 BibliographicalNotes.............................................. 51 5 Non-ArchimedeanBilinearForms.................................... 53 5.1 Introduction...................................................... 53 5.2 BasicDefinitions.................................................. 53 5.2.1 ContinuousLinearFunctionalsonEω .......................... 53 5.2.2 Bounded BilinearFormsonEω×Eω ........................... 55 5.2.3 Unbounded BilinearFormsonEω×Eω......................... 56 5.3 ClosedandClosablenon-Archimedean BilinearForms.................. 58 5.3.1 ClosednessoftheFormSum .................................. 59 5.3.2 Constructionofanon-Archimedean HilbertSpaceUsingQuadratic Forms ..................................................... 61 Contents ix 5.3.3 FurtherPropertiesoftheClosure............................... 62 5.4 RepresentationofBilinearFormsonEω×Eω byLinearOperators ........ 63 5.5 BibliographicalNotes.............................................. 65 6 FunctionsofLinearOperatorsonEω ................................. 67 6.1 Introduction...................................................... 67 6.2 ProductsandSumsofDiagonalOperators............................. 67 6.3 IntegerPowersofDiagonalOperators ................................ 69 6.4 FunctionsofSelf-AdjointOperators.................................. 72 6.5 FunctionsofSomeSymmetricSquareMatricesOverQ ×Q ........... 73 p p 6.5.1 ThePowersoftheMatrixT ................................... 75 6.5.2 ExponentialoftheMatrixT .................................. 75 6.6 OpenProblems ................................................... 76 6.7 BibliographicalNotes.............................................. 76 7 One-ParameterFamilyofBoundedLinearOperatorsonFreeBanachSpaces 77 7.1 Introduction...................................................... 77 7.2 BasicDefinitions.................................................. 78 7.3 Propertiesofnon-ArchimedeanC -Groups ............................ 79 0 7.4 ExistenceofSolutionstoSomep-adicDifferentialEquations............. 83 7.5 OpenProblems ................................................... 86 7.6 BibliographicalNotes.............................................. 86 References ........................................................... 87 Index................................................................ 91

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.