No-gotheoremandoptimizationofdynamicaldecouplingagainstnoisewithsoftcutoff Zhen-Yu Wang and Ren-Bao Liu∗ Department of Physics and Center for Quantum Coherence, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China Westudytheperformanceofdynamicaldecouplinginsuppressingdecoherencecausedbysoft-cutoffGaus- sian noise, using short-time expansion of the noise correlations and numerical optimization. For the noise correlationswithoddpowertermsintheshort-timeexpansion,thereexistsnodynamicaldecouplingschemeto eliminatethedecoherencetoarbitraryordersoftheshorttime,regardlessofthetimingorpulseshapingofthe controlunderthepopulationconservingcondition. Weformulatetheequationsforoptimizingpulsesequences fordynamicaldecouplingthatminimizesdecoherenceuptothehighestpossibleorderoftheshort-timeexpan- sion. Inparticular,weshowthattheCarr-Purcell-Meiboom-Gillsequenceisoptimalinshort-timelimitforthe noisecorrelationswithalinearorderterminthetimeexpansion. 2 PACSnumbers:03.67.Pp,03.65.Yz,03.67.Lx,82.56.Jn 1 0 2 I. INTRODUCTION periments, finding efficient DD schemes with fewer control pulses is desirable. A remarkable advance is the Uhrig DD t c (UDD)[26–29]. UDDisoptimalintheshort-timelimitinthe O Quantum information processing [1] relies on the coher- sensethatitsuppressesthepuredephasingofaqubitcoupled enceofquantumsystems. Unavoidableinteractionsbetween toafinitebathtothe Mthorderusingonly Mqubitflips. The 4 aquantumsystemanditsenvironment(bath)introducenoise performance bounds for UDD against pure dephasing were ] on the system and lead to error evolutions (decoherence) of established [30]. Shaped pulses [31, 32] of finite amplitude h the quantum system. Various methods have been proposed canbeincorporatedintoUDD[31]. Manyrecentexperimen- p to combat the decoherence, including decoherence-free sub- tal studies [20, 23, 33–37] demonstrated the performance of - t spaces[2–4],error-correctioncodes[5,6],anddynamicalde- UDD. n coupling(DD)[7–9]. Inparticular,theDDschemeusesrapid Itisimportanttofindefficientschemestosuppressgeneral a unitarycontrolpulsesactingonlyonthesystemstosuppress u decoherence(includingpuredephasingandpopulationrelax- theeffectsofthenoisefromtheenvironments.DDhasthead- q ation). Yang and Liu extended UDD to the suppression of [ vantages of suppressing decoherence without measurement, populationrelaxation[29].Thisinspiredefficientwaystosup- feedback,orredundantencoding[8]. DDoriginatedfromthe pressthegeneraldecoherenceofsinglequbits,includingcon- 1 seminal spin echo experiment [10], in which the effect of a v catenationofUDDsequences(CUDD)[38]andamuchmore 8 static random magnetic field (inhomogeneous broadening) is efficientonecalledquadraticDD(QDD)[25,39–42]discov- canceled.AndmorecomplexDDpulsesequences,suchasthe 3 eredbyWestetal[39]. Basedontheproofin[29],Mukhtar 3 Carr-Purcell-Meiboom-Gill(CPMG)sequence[11,12],were et al generalized UDD to protect arbitrary multilevel sys- 1 designedtoprolongthespincoherencetime[13]. temswithfullpriorknowledgeoftheinitialstates[43]. One . 0 The early DD schemes only eliminate low-order errors, can actually preserve the coherence of arbitrary multi-qubit 1 i.e., the errors of quantum evolutions up to some low order systems by protecting a mutually orthogonal operation set 2 in the Magnus expansion. By unitary symmetrization pro- (MOOS)[25]. BynestingUDDsequencesforprotectingthe 1 cedure [7, 8], DD cancels the first order (i.e., leading order) elementsintheMOOS,thenestedUDD(NUDD)[25,42,43] : v errors. To eliminate errors to the second order in short time, requires only a polynomially increasing number of pulses in Xi mirror-symmetric arrangement of two DD sequences can be thedecouplingorder. TheseuniversalDDschemesalsowork used [8]. The first explicit arbitrary Mth order DD scheme, foranalyticallytime-dependentbaths[44]. r a which suppresses errors to O(TM+1) for short evolution time Theabove-mentionedvariationsofUDD,however,relyon T,istheconcatenatedDD(CDD)[14,15]proposedbyKhod- the finiteness of the baths, i.e., the existence of hard high- jastehandLidar.CDDsequencesagainstpuredephasingwere frequency cutoff in the noise spectra. Legitimate questions investigatedforelectronspinqubitsinrealisticsolid-statesys- are:Forquantumsystemscoupledtoaninfinitequantumbath tems with nuclear spins as baths [16–18]. Experiments [19– or affected by soft-cutoff noise, can any DD be designed to 23] have tested the performance of CDD. CDD works for eliminate the decoherence to arbitrary orders of precision in generic quantum systems coupled to a finite bath [24, 25]. the short-time limit? And if yes, how can such DD be de- However, since CDD uses recursively constructed pulse se- signed? Such questions have been previously addressed in quences to suppress decoherence, the number of pulses in- somespecificnoisemodels. Comparingtheefficiencyofvar- creases exponentially with the decoupling order. As pulse ious DD sequences in suppressing pure dephasing of a qubit errors are inevitably introduced in each control pulse in ex- duetoclassicalnoise,Cywin´skietalobservedthatifthenoise spectrumcutoffisnotreached,CPMGsequences[11,12]ac- tually performs better than CDD and UDD sequences [45]. Also, Pasini and Uhrig derived the equations for minimizing ∗Electronicaddress:[email protected] decoherenceforpower-lawspectra,andfoundthatthenumer- 2 ically optimized sequences resemble CPMG [46]. Chen and destroys the quantum coherence. We can suppress the deco- LiuprovedthatfortelegraphlikenoisetheCPMGsequences herencebyDDcontrolonthequbit. Thereisonlyonenoise are the most efficient scheme in protecting the qubit coher- sourceβ(t)inthemodelEq.(1),andtosuppressthedecoher- ence in the short-time limit and the decoherence can be sup- ence we need to protect a MOOS which consists of a Pauli pressed at most to the third order of short evolution time by operatorσ (moregenerallyσ cosφ+σ sinφwithφbeing x x y DD[47]. Theseresultssuggestthatfornoisewithsoftcutoff real) [25]. We will prove later that DD can suppress the de- inthespectrum,therearecertainconstraintsontheefficacyof coherence (i.e., the protection of the MOOS {σ }) only to a x DD. However, no conclusion has been drawn on the perfor- certainorderofshortevolutiontimefornoisecorrelationsthat manceofDDwitharbitrarytimingandpulseshapingforthe haveodd-powerexpansiontermsintime. Weexpectthatthe generalcasesofsoft-cutoffnoise. proofalsoappliestootherquantumsystems(e.g.,multi-qubit In this paper, we address the general question of the per- systems) when the noise correlations have odd-power terms, formanceofDDagainstsoft-cutoffnoise,basedontheshort- sinceinthosesystemstherearemorenoisesourcesandmore timeexpansionofthenoisecorrelations. Theessenceoftime- system operators (e.g., a MOOS consisting of L > 1 Pauli expansionmethodistoavoiddivergenceintheintegrationof operators)shouldbeprotected. soft-cutoffnoiseinthefrequencydomain. Wefindthatwhen Whenweapplyasequenceofinstantaneousunitaryopera- the expansion of the noise correlation has odd-power terms tionsσ atthemomentsT ,T ,...,T ,thecontrolledevolu- x 1 2 N intime,thereexistsnoDDschemetoeliminatethedecoher- tionoperatorreads encetoanarbitraryorderoftheshorttime, regardlessofthe timing and shaping of the control pulses under the popula- U(T) = (σx)NU(TN+1,TN)σxU(TN,TN−1)··· tionconservingcondition. Theodd-powertermsinthetime- ×σ U(T ,T )σ U(T ,T ), (2) x 2 1 x 1 0 expansionindicatethatthenoisehasnohardhigh-frequency cutoff. Sinceforsoft-cutoffnoisethedecoherencecannotbe whereT0 =0,TN+1 =T,andthefreeevolutionoperator eliminatedatacertainorderofshorttime,wederiveasetof eexqpuaantisoinosntowmhiilneimeliizmeitnhaetilnegadtihneg-loorwdeerrtoerrdmerisn.thTehsehsoerte-tqiumae- U(Tj+1,Tj)=e−iσ2z(cid:82)TTjj+1[ωa+β(t)]dt. (3) tionsarenumericallysolvedforoptimalsolutions. Inparticu- NotethatwhenNisodd,wemayapplyanadditionalσ pulse lar,fornoisecorrelationswithalinearordertermintime,we x attheendofthesequencefortheidentityevolution. Using provethattheCPMGsequencesareoptimal. Forothernoise correlationswithodd-orderterms,theminimumpulseinterval oftheoptimizedsequencesislargerthaninUDDsequences. σxU(Tj+1,Tj)σx =e−iσ2z(cid:82)TTjj+1[−ωa−β(t)]dt, (4) This feature is important in realistic experiments when there isaminimumpulseswitchingtime[48]. wewritetheevolutionoperatoras This paper is organized as follows: In Sec. II, we analyze theperformanceofDDviatheshort-timeexpansionofcorre- U(T)=e−iσ2z(cid:82)0TωaFπ(t)dte−iσ2z(cid:82)0Tβ(t)Fπ(t)dt, (5) lationfunctions,andwegivetheconditionunderwhichdeco- herencesuppressiontoarbitraryorderisimpossible.Therela- where we have defined the modulation function for instanta- tionbetweenthehigh-frequencycutoffandtheshort-timeex- neousπ-pulsesequences[26,45] pansionofcorrelationsisalsodiscussed.InSec.III,wederive the equations for sequence optimization and obtain optimal DD for noise correlations with odd-power expansion terms. F (t)=(−1)j fort∈(Tj,Tj+1] . (6) Finally,theconclusionsaredrawninSec.IV. π 0 fort>T, ort≤0 Under DD control, the qubit is flipped at different moments, II. NO-GOTHEOREMONDYNAMICALDECOUPLING and the random field β(t) is modulated by the modulation AGAINSTNOISEWITHSOFTCUTOFF function F (t). Formultilevelsystems, themodulationfunc- π tions resulting from instantaneous π-pulse sequences may We consider the pure-dephasing Hamiltonian for a single havevaluesnotrestrictedto{±1}fort∈(0,T]. InRef.[49],it spin(qubit) isshownthatforDDcomposedofspeciallyengineeredfinite- duration pulses, the effective modulation functions can take 1 valuesfrom{+1,−1,0}alternatively. Wemayalsoencounter H = σ [ω +β(t)], (1) 2 z a effectivemodulationfunctionswhicharetrianglewavefunc- tions during the time of system evolution [50]. For a more whereσ =|+(cid:105)(cid:104)+|−|−(cid:105)(cid:104)−|isthePaulioperatorofthequbit,ω z a general analysis, we assume that the control conserves the istheenergysplittingofthequbit,andβ(t)describesrandom populations and the phase modulation function F (t) has a noisewithaverageβ(t) = 0. Heretheoverbardenotesaver- π generalformas agingoverthenoiserealizations.Weassumethatthestatistics ofthenoisefluctuationsareGaussian. AfteradurationoffreeevolutiontimeT,thenoiseinduces F(t)=aboundedfunction fort∈(0,T] . (7) (cid:82)T 0 fort>T ort≤0 between the two states |±(cid:105) a random phase shift β(t) that 0 3 AtthemomentT, theoff-diagonaldensitymatrixelement This kind of noise can be caused by Markovian (or instanta- ofanensembleis neous) collisions in the bath [53]. We can see from Eq. (13) thatwhenthenoisespectrumhashardhigh-frequencycutoff, ρ↑↓(T)=ρ↑↓(0)e−i(cid:82)0TωaF(t)dte−i(cid:82)0Tβ(t)F(t)dt, (8) the noise correlation function β(t)β(0) is analytic as a func- tionoftimeandtheexpansioncontainsonlyeven-orderterms, where F(t) = Fπ(t) for ideal instantaneous σx pulses on β(t)β(0) =(cid:80)∞ C t2k. the qubit. The coherence is characterized by the ensemble- cutoff k=0 2k Expanding the noise correlation in time has the advantage averagedphasefactor of avoiding the divergence of integration over frequency for noisewithasofthigh-frequencycutoffinthepowerspectrum. W(T)≡e−i(cid:82)0Tβ(t)F(t)dt. (9) Thereforewecanderivecertaingeneralresultsontheefficacy of general dynamical decoupling control against soft-cutoff ForGaussiannoise,theensemble-averagedphasefactorW(T) noise. Also,theperformanceofDDintheshort-timelimitis isdeterminedbythetwo-pointcorrelationfunctionβ(t1)β(t2) directlyderivedfromthetime-domainexpansion. andW(T)becomes[45,51,52] UsingtheexpansionEq.(14),wewrite W(T)=e−χ(T), (10) (cid:88)∞ χ(T)= C φ , (15) k k wherethephasecorrelation k=0 1(cid:90) T (cid:90) T wherethedecoherencefunctions χ(T)= dt dt β(t )β(t )F(t )F(t ), (11) 2 0 1 0 2 1 2 1 2 φ ≡(cid:90) Tdt (cid:90) t1dt (t −t )kF(t )F(t ). (16) k 1 2 1 2 1 2 can be written as the overlap between the noise power spec- 0 0 trumandafilterfunctiondeterminedbytheFouriertransform ThereforeifthemodulationfunctionF(t)isdesignedtomake ofthemodulationfunction[45]. TheaimofDDdesignisto minimizeχ(T). {φ =0}M ≡{φ =0,··· ,φ =0}, (17) k k=0 0 M We assume the noise is stationary, i.e., of time translation symmetry, β(t )β(t ) = β(t −t )β(0). The noise correlation the decoherence in the short-time limit is eliminated to the functionhasth1esy2mmetry1β(t)β2(0) = β(0)β(t),sinceβ(t)and Mthorder, i.e., χ(T) = O(TM+3). Notethate−i(cid:82)0TωaF(t)dt = 1 inEq.(8)whenφ =0.Theeven-orderdecoherencefunctions β(0)commute[Forquantumnoise,thismaynotbetrue.Butin 0 Eq.(11),t andt canbeexchangedwithoutchangingtheinte- φ2k describethedecoherenceduetothelow-frequencynoise, 1 2 gration. Sothenoisecorrelationcanalwaysbesymmetrized]. while the odd-order functions φ2k+1 arise from the soft high- frequencycutoffinthenoisespectrum. Thesesymmetriesindicatethatthenoisecorrelationisaneven functionoftime,i.e., β(t)β(0)≡C (t)=C (|t|). (12) A. Analysisofthedecoherencefunctions corr corr The noise correlation can be transformed from the noise Belowweshowthatwhenthenoisehassofthigh-frequency powerspectrumS(ω)as cutoff,itisnotpossibletosuppressthedecoherencetoanar- (cid:90) ∞ dω bitraryorder,nomatterhowtheDDmodulationfunctionF(t) β(t)β(0)= S(ω)e−iωt. (13) isdesigned. 2π −∞ The general filter function is defined as the Fourier trans- Toanalyzethedecoherencesuppressioninshort-timelimit, formofthegeneralmodulationfunction, weexpandthenoisecorrelationfunctioninpowerseries (cid:90) ∞ F˜(ω)≡ F(t)eiωtdt= F˜∗(−ω). (18) (cid:88)∞ −∞ β(t)β(0)≡ C |t|k. (14) k Weexpanditinpowerseries k=0 The existence of odd-order terms means that the correla- (cid:88)∞ (iω)m−1 F˜(ω)= Λ , (19a) tionfunctionisnon-analytical,whichindicatesthatthenoise m! m sourcecannotbeafinitequantumbath. Thenoisewithnon- m=1 (cid:90) T analytical correlation functions must come from the fluctua- Λ ≡m F(t)tm−1dt. (19b) tions of an infinite bath, since otherwise the unitary evolu- m 0 tion of a finite quantum system will always lead to analyti- NotethatΛ = O(Tm). Forasequenceof N instantaneousπ cal correlation functions. For example, the noise correlation m β(t)β(0) = e−|t|/tc has odd-order terms in the time expansion, pulses,F(t)isgivenbyEq.(6)andΛmreads and the noise has a Lorentz spectrum, which has a power- (cid:90) T (cid:88)N lawdecreaseathighfrequencies. Wecallthispower-lawde- Λ(π) =m F (t)tm−1dt= (−1)j(Tm −Tm). (20) creaseasofthigh-frequencycutoffinthenoisespectrum[46]. m 0 π j=0 j+1 j 4 AsF(t)=0fort(cid:60)(0,T],weextendtheboundsofintegra- whichisdecomposedas(withthechangesofsummationorder tionforttoinfinityandtransformEq.(16)to andindices) φk = ∂(∂iηk)k (cid:90)−∞∞ d2ωπ1 (cid:90)−∞∞ d2ωπ2 (cid:90)−∞∞dt1(cid:90)0t1dt2 φ2m = (2m)!(cid:90)−∞∞ d2ωπ 2(cid:88)rm=+112m(cid:88)n−=r1+22(iω−)(2−m1−)r+r3−nΛr!r Λn!n whereweset×ηF˜→(ω01)aF˜f(teωr2d)eiff−ieωr1et1net−iaiωt2iot2ne.iη(Itn1−tet2g),rationsove(r2t12), +2(cid:88)m+12m(cid:88)−r+22(iω−)(2−m1−)rn+3−nΛr!r Λn!n t andω give r=1 n=1 1 1 ∂k (cid:90) ∞ dω F˜(ω) −(2m)!2(cid:88)m+1(−1)2m−rΛr Λ2m−r+2 . (29) φ = [F˜(η)−F˜(−ω)]. (22) 2 r! (2m−r+2)! k ∂(iη)k 2π i(ω+η) r=1 −∞ Theintegralsofthetermswithodd-powerofωvanish. And Using for even functions of ω, the sum n+r is an odd number, so ∂(∂iηr)rF˜(η)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) = (r+r!1)!Λr+1, forr≥0, (23) (th−e1c)rh+an(−ge1)onf=su0m.mThautisonthienidnetxegorfalthineElaqs.t(l2in9e)ivnanEiqsh.e(2s.9)W,withe η=0 write andchangingthesummationindex,weobtain φk =k!(cid:90)−∞∞ d2ωπ (|−F˜i(ωω))k|+21 −(cid:88)kr=+11 (−iFω˜()ωk−)r+2Λr!r. (24) φ2m =(2m)!(−21)m (cid:32)(mΛ+m+11)!(cid:33)2−(cid:88)r=m1(−1)rΛr!r (2mΛ−2mr−r++2(23)0!). FromEq.(30),wefindthatthefollowingtwosetsofequations Note that the summation over r and the integration over fre- areequivalent quency cannot be exchanged when the integration does not convergeforeachindividualterm. UsingEq.(19a),wehave {φ2m =0}mM=−01 ⇔{Λm =0}mM=1. (31) φk = k!(cid:90)−∞∞ d2ωπ (|−F˜i(ωω))k|+21 −(cid:88)kr=+11k(cid:88)−n=r+12(iω(−)k1−)rk+−3r−nΛr!r Λn!n ofFthoereinqsutaatniotannseeotu{sΛπm-p=ulΛse(mπ)se=qu0e}mnM=c1esi,sthe optimal solution − (cid:88)k+1 (cid:88)∞ (iω(−)k1−)rk+−3r−nΛr!r Λn!n. (25) TUjDD =Tsin2(cid:20)2Nπ+j 2(cid:21), (j=1,2,...,N), (32) r=1n=k−r+3 which is the timing of UDD sequences [26]. Note that WesimplifythelastlinebyusingEq.(19b)andtheequality the decoherence functions φ describe the noise with high- 2m frequency cutoff in spectrum. Our result is consistent with (cid:90) ∞ dω(cid:88)∞ (±iω)n−rtn = 1 tr−1 , forr≥1,t≥0, (26) Refs.[28,29]. TheconditionsEq.(31)aremoregeneralthan 2π n! 2(r−1)! the one that leads to UDD, and Eq. (31) may lead to more −∞ n=r generaldesignsofoptimalDD. whichisprovedinAppendixA.Weobtain φk =k!(cid:90) ∞ d2ωπ (|−F˜i(ωω))k|+21 −(cid:88)k+1k(cid:88)−r+2(iω(−)k1−)rk+−3r−nΛr!r Λn!n 2. Leadingodd-orderdecoherencefunctionφ2M−1 −∞ r=1 n=1 −k!(cid:88)k+1(−1)k−rΛr Λk−r+2 . (27) relFatoironthefunnocitsieonwβit(ht)sβo(f0t)hiisghn-oftreaqnuaelnyctiyc.cuIttosffe,xtphaennsoioisneccoonr-- 2 r=1 r! (k−r+2)! tains odd-order terms C2m+1φ2m+1 (cid:44) 0. Suppose the DD scheme has eliminated the leading order errors by making {φ = 0}M−1, i.e., Eq. (31). We want to study the leading 2m m=0 1. Even-orderdecoherencefunctionsφ2m odd-order decoherence functions φ2M−1 due to the soft high- frequencycutoffinthenoisespectrum. Wefirstconsidertheeven-orderdecoherencefunctionsφ , The odd-order decoherence function φ of Eq. (27) 2m 2M−1 whichiscausedbythenoisewithhardhigh-frequencycutoff. reads Fgroarlevvaennisnhuems.bEeqr.2(m27,)(−g|Fi˜iω(vω)e2)m|s2+1 isanoddfunctionanditsinte- φ = (2M−1)!(cid:88)2M(−1)rΛr Λ2M+1−r 2M−1 2 r! (2M+1−r)! r=1 φ2m =(2m)!(cid:90)−∞∞ d2ωπ 2(cid:88)rm=+112m(cid:88)n−=r1+2(iω−)2(m−−1r)+r3−nΛr!r Λn!n +(2M2−π 1)!(cid:90)−∞∞dω(cid:34)(|−F˜i(ωω))2|M2 −(2m2)!2(cid:88)m+1(−1)2m−rΛr!r (2mΛ−2mr−r++22)!, (28) +(cid:88)2M 2M(cid:88)−r+1(iω)(2−M1−)rr+2−nΛr!r Λn!n. (33) r=1 r=1 n=1 5 TheconditionEq.(31)gives C = 0 andC = −1. We assume that the noise correlation 1 3 decreasessmoothlyatlongcorrelationtimes,thatis, (cid:90) ∞ dω(cid:34) |F˜(ω)|2 φ2M−1 =(2M−1)! −∞ 2π (−iω)2M (34) lim dk C (t)=0, fork=0,1,..., (39) + (cid:88)2M 2M(cid:88)+1−r (iω)(2−M1−)rr+2−nΛr!r Λn!n. and t→∞dtk corr r=M+1 n=M+1 (cid:90) ∞ dL Noticeinthesummation2M+1−r< M+1. Weobtain IL(ω)≡ eiωtdtLCcorr(t)dt, (40) 0 φ =(−1)M(2M−1)!(cid:90) ∞ dω|F˜(ω)|2. (35) vanishes at large ω for L = 0,1,... [54]. The noise correla- 2M−1 −∞ 2π ω2M tionsthatdecayinthecorrelationtimesmoothlywithoutfast oscillationsatisfyEq.(40).Forexample,thenoisecorrelation InEq.(35),theintegrand|F˜(ω)|2/ω2M ≥0anditcannotvan- e−|t|hasI (ω)=i(−1)L/(ω+i)→0whenω→∞. ish for all ω from −∞ to ∞. Thus we have the following L We consider the high frequency behavior of the Fourier theorem. transformofC (t), corr Theorem1. Forthenoisecorrelationβ(t)β(0) = (cid:80)∞k=0Ck|t|k (cid:90) ∞ with{C2m (cid:44)0}mM=−01andC2M−1 (cid:44)0,thereisnoDDschemethat S2K(ω)= Ccorr(t)eiωtdt. (41) caninduceafilterfunction F(t)toeliminatetheerrorsupto −∞ O(T2M+1)forshortevolutiontimeT. Thatis,thereisnoDD IntegrationbypartsL≥(2K+1)timesgives schemesatisfying{φ =0}M−1andφ =0. 2m m=0 2M−1 tioTnhFis(tt)h,eaonrdemithsohlodwssfothraatrbointrearcyannnoont-zseurpopmreossduthlaetidoencfouhnecr-- S2K(ω)=2(cid:60)(cid:88)r=L1 ((r−−iω1))r!Cr−1+ (I−Li(ωω))L, (42) encetoarbitraryorderwhenthenoisecorrelationisnotana- wherewehaveusedEqs.(37)and(39). lytic. Forexample,forthenoisewiththecorrelationfunction e−γ|t|,onecannotsimultaneouslyeliminatethetwoleadingde- UsingEqs.(38)and(40),weobtainforlargeω, coherencetermsC0φ0 andC1φ1,andtheerrorinducedbythe (2K−1)! (cid:32) 1 (cid:33) noiseisatleastoftheorderO(T3). S2K(ω)≈2 (iω)2K C2K−1+O ω2K+1 , (43) TheresultinRef.[47]thatDDcansuppressdecoherenceat mosttothethirdorderofshortevolutiontimefortelegraphlike whichisapower-lawdecreaseathighfrequencies. noiseisgeneralfornoisewitharbitrarystatistics. Inderiving When the noise correlation expansion contains only even- Theorem1,wehavemadetheassumptionthatthestatisticsof order terms, from Eq. (42) we have the noise spec- thenoiseareGaussianandthedecoherenceisdeterminedby trum S (ω) = 2(cid:60)I (ω)/(−iω)L for an arbitrarily large even L thetwo-pointnoisecorrelation.Fornon-Gaussiannoise,there L. From the assumption lim I (ω) = 0, we have ω→∞ L existsthedecoherenceeffectfromhigher-ordernoisecorrela- lim S (ω)ωL = 0 for an arbitrarily large L and there- ω→∞ even tions. forethenoisespectrumhasahardhigh-frequencycutoff. One example is the correlation function e−t2, which has the noise spectrumofexponentialform∼ exp(−ω2),andobviouslythe B. Noisecorrelationexpansionandhigh-frequencycutoff UDD sequence can suppress the noise4effect order by order. Thelargeωbehaviorofothercorrelationfunctionsoftheform Here we discuss further on the relation between the noise exp(−(cid:80)p α t2j)canbecalculatedbythesaddlepointinte- correlationexpansionandhigh-frequencycutoff. Letuscon- j=1 2j gration method, which gives a result of an exponential de- siderthecorrelationfunctionsoftheexpansionform crease at high frequencies (i.e., hard cutoff). For example, (cid:88)∞ when ω is very large, (cid:82)∞ e−t4eiωtdt (cid:39) 1(cid:61)(cid:113) 2π eg(ω), where β(t)β(0)=C (t)= C |t|k, (36) −∞ 2 a(ω) corr k=0 k g(ω)=3(ω4)43e−i2π/3anda(ω)=12(ω4)2/3ei2π/3. Wenowconsiderthenoisespectrum wheretheexpansioncoefficients 1 C ≡ 1 dkCcorr(t)(cid:12)(cid:12)(cid:12)(cid:12) (37) SP(ω)≈ ωP, forω≥Ω, (44) k k! dtk (cid:12)(cid:12) t→0+ approximated by a power law (P > 0) decrease beyond the frequencyΩ. Thenoisecorrelationfunctionis arefiniterealnumberswith C2k−1 =0, fork< K, (38a) β(t)β(0)=CΩ,cutoff(t)+CΩ,P(t), (45) C2K−1 (cid:44)0. (38b) wherethecorrelationduetohigh-frequencynoise The leading odd-order term in the short-time expansion of (cid:90) ∞ dω 1 Ccorr(t) is C2K−1|t|2K−1. An example is Ccorr(t) = e−|t|3 with CΩ,P(t)=2(cid:60) Ω 2π ωPe−iωt, (46) 6 for K ∈ {1,2,...}, which can be transformed to a more gen- eral form of noise c by using some scaling of the a+(ω/ωd)2K amplitude and ω. For example, the measured ambient noise for ions in a Penning trap has an approximate 1/ω4 spec- trum at high frequencies and a flat dependence at low fre- quencies[33],whichapproximatelycorrespondstothenoise spectrumEq.(52)withK =2. Thecorrespondingcorrelation functionofEq.(52)isobtainedbytheinversetransform (cid:90) ∞ dω e−iωt FIG.1: Thepathsfortheintegralof1/zP. β(t)β(0) = . (53) 2K 2π 1+ω2K −∞ Usingtheresiduetheorem,wehave andthenoisecorrelationatlowfrequencies CΩ,cutoff(t)=2(cid:60)(cid:90) Ω d2ωπSP(ω)e−iωt, (47) β(t)β(0)2K = 2iK (cid:88)K−1exp[eixπp[(−2inei+2πK1(2)n(+21K)|t|−] 1)]. (54) 0 n=0 2K causesadditionaldecoherence. TheeffectfromCΩ,cutoff(t)can Expandingtheright-handsideinpowersoft,weget beeliminatedefficientlybyDDsequences, suchasUDDse- quences,asthenoisespectrumofCΩ,cutoff(t)hasahardcutoff i (cid:88)∞ (−i|t|)m (cid:88)K−1 Ω. β(t)β(0)2K = 2K m! ei2πK(2n+1)(m−2K+1), (55) AsCΩ,P(t)isanevenfunction,wejustcalculatetheintegral m=0 n=0 forthecaseoft>0. Wehave(fort>0) andsummingthetermsgives (cid:34)(cid:90) (cid:90) (cid:90) (cid:35) (cid:60) 1 CΩ,P(t)= π cΩ+ ci+ c∞ zPeiztdz, β(t)β(0)2K = 2−Ki (cid:88)∞ (−mi|t!|)mei(m−e22iKK(+m1+)π1[)(π−/K1)−m1+1]. (56) m=0 wherethepathscΩ,ci,andc∞areshowninFig.(1). Since the maximum of 1/zP → 0 as |z| → ∞ in the upper InEq.(56),theleadingodd-ordertermofthetimeexpansion (cid:82) half-plane,thecontribution c∞ z1Peiztdz=0. Thecontribution is 2((2−K1−)K1)!|t|2K−1,aspredictedbyEq.(51). ByTheorem1,we (cid:60)(cid:90) 1 (cid:60)(cid:90) ∞ havethefollowingcorollary. eiztdz= i1−Py−Pe−ytdy (48) π ci zP π Ω Cdeocroohlelarernyc1e.upDytonaamnicearlrodrecOo(uTp2lKin+g1)ciannthoenltyimseu-pepxrpeasnssitohne vanishesforevenP. And ofχ(T)forthenoisespectrumwithhigh-frequencyasymptote (cid:60)(cid:90) 1 eiztdz= (cid:60)(cid:90) π2 1 eiΩteiθ(iΩ)eiθdθ ∼ω−2K. π zP π ΩPeiPθ For a more general noise spectrum with high-frequency cΩ 0 = I(1)+I(2), (49) asymptote ω−α, one can not suppress the error higher than cΩ cΩ the order of O(Tmα+1) with mα being the smallest even num- where ber larger than α. This is because comparing with ω−mα, the asymptoticnoisespectrum 1 withα<m decreasesslower I(1) = (cid:60) (cid:88)∞ 1 Ω1−P(iΩt)r (cid:16)ir+1−P−1(cid:17), (50a) andtheoverlapbetweenS(1ω+)ωαand|F˜(ω)|2iαslarger. cΩ π r!(r+1−p) The 1/f noise is a special case (the case of P = 1) to Ic(2Ω) = 21(cid:60)r=(0Pi,Pr(cid:44)−tPP−−111)!(cid:88)r∞=0δr,P−1. (50b) fbπ1ue(cid:82)nΩcd∞ttiiscoconusszχs/ePzd=d1.z(TdT)ivh[eeErgqne.os(is1ae1t)tc]o→irnrde0lua;cteihodonwbefyuvnethrc,teitohhneigdChe-Ωcf,roPe=hq1eu(rtee)nncc=ye noiseisfinite. WhenthereisnoDDcontrol,i.e.,forthecase ForevenP,I(1)isanexpansionofevenpowersoft,and offreeinductiondecay, cΩ Ic(2Ω) = 2((−P1−)P1/2)!|t|P−1, forevenP, (51) χP=1(T)= 2π1Ω2 [1−cos(ΩT)+ΩTsin(ΩT)] T2 (cid:90) ∞ cosz + dz, (57) istheleadingoddorderexpansiontermofthenoisecorrela- 2π ΩT z tionfunction. Asanexample,weconsidertheflowingnoisespectrum, whichhastheshort-timeexpansion 1 1 (cid:16) (cid:17) S2(cid:48)K(ω)≡ 1+ω2K, (52) χP=1(T)= 4π(−2ln(ΩT)+3−2γe)T2+O Ω2T4 , (58) 7 with the Euler constant γ ≈ 0.577. Notice the interesting e 18 resultthatχP=1(T)doesnothavethesimplepowerlawscaling atshorttimeT. Aftereliminatingtheeffectoflow-frequency 16 noisebyhigh-orderDDsequenceswhichsatisfy{Λ =0}M 14 m m=1 (Eq. (31)) w(cid:16)ith 2(cid:17)M > P−1, χP(T) has a power la(cid:16)w s(cid:17)caling 12 χP(T) = O TP+1 [46],andwehaveχP=1(T) = O T2 when 10 Λ =0. 1 8 6 ODD III. SEQUENCEOPTIMIZATIONINSHORT-TIMELIMIT 4 UDD CPMG 2 TheaimofoptimalDDistominimizeχ(T). Asindicated 0 0.2 0.4 0.6 0.8 1 in Eq. (35), a smaller F˜(ω) at low frequencies will give a smallerφ . HerewefocusonDDwithidealinstantaneous 2M−1 FIG.2: (Coloronline). ComparisonoftheODD,UDDandCPMG π pulses. We use more pulses to construct a more efficient sequences for different pulse number N. Squares (blue), triangles modulation function F(t) = Fπ(t) to minimize φ2M−1, with (green),andcircles(red)correspondtoUDD,CPMG,andODD.The the conditions {φ2m = 0}mM=−01 [Eq. (31)]. Using the method ODDsequencesareoptimizedtominimizeφ3 undertheconstraints of Lagrange multipliers, we need to solve a set of nonlinear φ =φ =0. 0 2 equationsas ∇{y,T}GM =0, (59a) anN-pulseCPMGsequencereads (cid:88)M GM ≡ yjΛ(jπ)+φ2M−1, (59b) TCPMG = 2j−1T, for j=1,...,N. (62) j=1 j 2N ∂ ∂ ∂ ∂ ∇ ≡( ,..., , ,..., ). (59c) TheCPMGsequencesobviouslysatisfytheconstraintΛ(π) = {y,T} ∂T ∂T ∂y ∂y 1 1 N 1 M 0 [see Eq. (20)], which is the so-called echo condition that The introduced variables {y } are the Lagrange multipliers. eliminates the effect of static inhomogeneous broadening. j NotethatthesequenceoptimizationinRef.[46]alsousedthe Eqs.(61)and(20)give constraints {Λ(mπ) = 0}, but the constraints were used there to ∂φ (cid:12)(cid:12) T2 (cid:104) (cid:105) guarantee the convergence of the calculation of χ(T). Here, 1(cid:12)(cid:12) =(−1)k+1 1+(−1)N , (63a) the constraints eliminate the lowest orders of errors ({φ2m = ∂Tk(cid:12)CPMG (cid:12) 4N2 d0}emMc=o−0h1)er[esneceeEfqro.m(31in)]hoinmoshgoenrte-otiumseblriomaidte.niInngpiasrteicliumlairn,attehde y1∂∂ΛT(1π)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) =2(−1)k+1y1. (63b) whenφ =0. k (cid:12)CPMG 0 WecalculateEq.(16)byseparatingthedomainofintegra- Thus the CPMG sequences also satisfy Eq. (59) with y = tion according to the value of F (t )F (t ). For k ≥ 0, we (cid:104) (cid:105) 1 π 1 π 2 − T2 1+(−1)N ,sotheyareatleastthelocallyoptimalpulse obtain 8N2 sequences. It has been proved that CPMG sequences are the φk = (k+1−)(1k+2)4(cid:88)N (cid:88)j−1(Tj−Ti)k+2(−1)i+j menocsetaegffiaicniestnttepleuglsreapshe-qliukeencneosisienipnrtohteecsthinogrt-thtiemqeulbimiticto[h4e7r]-. j=2 i=1 Withnumericalevidence,weconjecturethatitisalsotruethat (cid:88)N theCPMGsequencesareoptimalintheshort-timelimitwhen +(TN+1−T0)k+2(−1)N+1+2 (Tj−T0)k+2(−1)j the time expansion of the noise correlation function has the j=1 twoleadingtermsC0andC1|t|. +2(cid:88)N (TN+1−Ti)k+2(−1)N+1+i. (60) {ΛF(mπo)r=ot0h}emMr=1c,aosense coafnmsieneimthiaztinthgeφs2hMo−r1t-twimitehotphteimcioznedditDioDn i=1 (ODD) coincides with UDD for pulse number N ≤ M. And as N increases, the ODD sequences gradually approach the Thenwehave CPMG sequences. For example, ODD for the noise correla- ∂φ∂2TM−1 = (−M1)k 2 (cid:88)N (Tj−Tk)2M(−1)j−(Tk−T0)2M tion k j=k+1 β(t)β(0)=C0+C2t2+C3|t|3+O(t4), (64) +(TN+1−Tk)2M(−1)N+1−2(cid:88)k−1(Tk−Tj)2M(−1)j. (61) isshowninFig.2incomparisonwithUDDandCPMG.The j=1 ODD sequences resemble the CPMG sequences when N is large. ForthespecialcaseofM =1,G =y Λ(π)+φ ,wefindthat WeshowinFig.3(a)theperformanceofthreeDDschemes 1 1 1 1 theCPMGsequencesaresolutionstoEq.(59). Thetimingof againstthenoisedescribedbyEq.(64). Acomparisonisalso 8 model,weexpectthattheresultoftheexistenceofthelargest decoupling order in short-time limit can be extended to the generaldecoherencemodel(includingbothdephasingandre- laxation)ofquantumsystems. ItisdesirabletostudytheDD in suppressing the general decoherence of quantum systems inthesoft-cutoffnoiseinthefuture. Acknowledgments WethankYi-FanLuoandBoboWeifordiscussions. This workwassupportedbytheHongKongGRFCUHK402209, the CUHK Focused Investments Scheme, and the National FIG.3:(Coloronline).Thedecoherencefunctionχ(T)asafunction ofpulsenumberN (a)withouthardcutoffand(b)withahardhigh- NaturalScienceFoundationofChinaProjectNo. 11028510. frequency cutoff ω = 40. Here the noise spectrum S(ω) = κ , c 1+ω4 with κ = 105 and T = 0.5. Squares (blue), triangles (green), and circles(red)correspondtoUDD,CPMG,andODD. TheODDse- AppendixA:ProofofEquation(26) quencesarethesameasthoseshowninFig.2. ToproveEq.(26),wejustneedtoprove showninFig.3(b)byconsideringahardhigh-frequencycut- (cid:90) R (cid:88)∞ (±ix)n−r π offω =40.InFig.3(a),wecanseethatODDsequencesgive lim dx = , forr≥1, (A1) bettercperformance than UDD and CPMG sequences. These R→∞ −R n=r n! (r−1)! ODDsequencesareoptimalforawiderangeofnoisewhich wheretheboundsintheintegralguaranteethatthemodulation has the noise correlation given by Eq. (64). When we intro- duceahigh-frequencycutoffinthenoisespectrum,asthecase functionF(t)isarealfunction. Using inFig.3(b),theODDisthebestinitiallywhenthenumberof pulses N (cid:46) ωcT/2 ≈ 10, and the UDD sequences become (cid:90) Rdx(cid:88)∞ (±ix)n−r =(cid:88)∞ Rn (in−1+c.c.), (A2a) better and suppress the decoherence order by order when N n! (n+r−1)!n islargeandthehardcutoffisreached. InFig.3(b), forlarge −R1 n=(cid:90)r R sinx n(cid:88)=∞1 Rn 1 N UDD is better than ODD, since the ODD sequences are dx= (in−1+c.c.), (A2b) optimized for soft-cutoff noise rather than hard-cutoff noise. (r−1)! −R x n=1 n!n(r−1)! InFig.3(a)thedecreasingofχ(T)isalineardecreaseinthe double-logarithmplot,butinFig.3(b)itismuchfaster. This andlim (cid:82)R sinxdx=π,wejustneedtoprove confirmsthatDDisnotsoefficientagainstsoft-cutoffnoise. R→∞ −R x (cid:88)∞ (cid:34) Rn Rn (cid:35) lim − (in−1+c.c.)=0. (A3) R→∞ (n+r−1)!n n!n(r−1)! IV. SUMMARYANDCONCLUSIONS n=1 For r = 1, it obviously holds. For r ≥ 2, we can show the Wehavestudiedthedynamicaldecouplingcontrolofdeco- difference herence caused by Gaussian noise with soft cutoff. We have tpperaronmvse,iodDnTDohfecnoaorneismoenc1loywrrsheulipacpthirosenhssohwadssectthohehate(,2rweKnhc−een1t)tohtheOos(dhTdo2rKet-x+t1pi)ma.nesTieohxne- ∆≡(cid:88)n∞=1 R(nn(+in−r1−+1c).!cn.)(r−1)!−(cid:89)rj−=11(n+ j)=O(cid:32)R1(cid:33), existenceofodd-ordertermsintheshort-timeexpansioncor- (A4) respondstoasofthigh-frequencycutoffinthenoisespectrum solimR→∞∆=0. Byexpandingthetermsinthesquarebrack- (i.e., a power-law asymptote at high frequencies). For these etsofEq.(A4),wehave noise spectra, we have derived the equations for pulse se- qdueceonhceeroenpctiemfiuznactitoionn,wanhdicehlimmiinniamteizseesvtehne-olerdaedrindgecoodhde-roerndceer ∆=(cid:88)∞ R(nn(i+n−1r+−c1.)c!.)(cid:88)r−2aknk, (A5) functions of lower orders. The ODD sequences obtained by n=1 k=0 thismethodcoincidewiththeUDDsequenceswhenthepulse wherea isanumberindependentofn. Wearrangetheterms k numberNissmall,andtheyresembleCPMGsequenceswhen inthesquarebracketsandget N islarge. Forthespecialcasethattheshort-timecorrelation function expansion has a linear term in time, the ODD se- quencesareexactlytheCPMGsequences. ∆=(cid:88)∞ R(nn(i+n−1r+−c1.)c!.)(cid:88)r−2bk(cid:89)k [(n+r− j)]+b0, (A6) Although we derived Theorem 1 from a pure dephasing n=1 k=1 j=1 9 with b independent of n. After some simplification it be- Hence∆=O(1),andEq.(26)isproved. j R comesforr≥2 (cid:88)r−1 ibkr+−1kR−1k eiR−(cid:88)k−1 Rn!nin+c.c.=O(cid:32)R1(cid:33). (A7) k=1 n=0 [1] M. A. Nielsen and I. L. Chuang, Quantum Computation 129901(2011). andQuantumInformation(CambridgeUniversity,Cambridge, [27] B.Lee,W.M.Witzel,andS.DasSarma,Phys.Rev.Lett.100, 2000). 160505(2008). [2] L.-M.DuanandG.-C.Guo,Phys.Rev.Lett.79,1953(1997). [28] G.S.Uhrig,NewJ.Phys.10,083024(2008). [3] P.Zanardi,Phys.Rev.A57,3276(1998). [29] W.YangandR.-B.Liu,Phys.Rev.Lett.101,180403(2008). [4] D.A.Lidar,I.L.Chuang,andK.B.Whaley,Phys.Rev.Lett. [30] G.S.UhrigandD.A.Lidar,Phys.Rev.A82,012301(2010). 81,2594(1998). [31] S.Pasini,T.Fischer,P.Karbach,andG.S.Uhrig,Phys.Rev.A [5] P.W.Shor,Phys.Rev.A52,2493(1995). 77,032315(2008). [6] A.M.Steane,Proc.R.Soc.Lond.A452,2551(1996). [32] B. Fauseweh, S. Pasini, and G. S. Uhrig, Phys. Rev. A 85, [7] P.Zanardi,Phys.Lett.A258,77(1999). 022310(2012). [8] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 [33] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. (1999). Itano,andJ.J.Bollinger,Nature458,996(2009). [9] W.Yang,Z.-Y.Wang,andR.-B.Liu,Front.Phys.6,2(2011). [34] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R.-B. Liu, [10] E.L.Hahn,Phys.Rev.80,580(1950). Nature461,1265(2009). [11] H.Y.CarrandE.M.Purcell,Phys.Rev.94,630(1954). [35] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. [12] S.MeiboomandD.Gill,Rev.Sci.Instrum.29,688(1958). Itano,andJ.J.Bollinger,Phys.Rev.A79,062324(2009). [13] M. Mehring, Principles of High Resolution NMR in Solids [36] H.Uys,M.J.Biercuk,andJ.J.Bollinger,Phys.Rev.Lett.103, (Spinger-Verleg,Berlin,1983),2nded. 040501(2009). [14] K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501 [37] E.R.Jenista,A.M.Stokes,R.T.Branca,andW.S.Warren,J. (2005). Chem.Phys.131,204510(2009). [15] K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310 [38] G.S.Uhrig,Phys.Rev.Lett.102,120502(2009). (2007). [39] J.R.West,B.H.Fong,andD.A.Lidar,Phys.Rev.Lett.104, [16] W.Yao,R.-B.Liu,andL.J.Sham,Phys.Rev.Lett.98,077602 130501(2010). (2007). [40] G.QuirozandD.A.Lidar,Phys.Rev.A84,042328(2011). [17] W.M.WitzelandS.DasSarma, Phys.Rev.B76, 241303(R) [41] W.-J.KuoandD.A.Lidar,Phys.Rev.A84,042329(2011). (2007). [42] L.JiangandA.Imambekov,Phys.Rev.A84,060302(2011). [18] W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and [43] M.Mukhtar,T.B.Saw,W.T.Soh,andJ.Gong,Phys.Rev.A B.N.Harmon,Phys.Rev.B75,201302(R)(2007). 81,012331(2010). [19] X.Peng, D.Suter, andD.A.Lidar, J.Phys.B:At.Mol.Opt. [44] Z.-Y.WangandR.-B.Liu,Phys.Rev.A83,062313(2011). Phys.44,154003(2011). [45] Ł. Cywin´ski, R. M. Lutchyn, C. P. Nave, and S. Das Sarma, [20] G.A.A´lvarez,A.Ajoy,X.Peng,andD.Suter,Phys.Rev.A82, Phys.Rev.B77,174509(2008). 042306(2010). [46] S.PasiniandG.S.Uhrig,Phys.Rev.A81,012309(2010). [21] A. M. Tyryshkin, Z.-H. Wang, W. Zhang, E. E. Haller, J. W. [47] K.ChenandR.-B.Liu,Phys.Rev.A82,052324(2010). Ager,V.V.Dobrovitski,andS.A.Lyon,arXiv:1011.1903v2. [48] K. Khodjasteh, T. Erde´lyi, and L. Viola, Phys. Rev. A 83, [22] Z.-H. Wang, W. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. 020305(2011). Ager, E. E. Haller, and V. V. Dobrovitski, Phys. Rev. B 85, [49] G.S.UhrigandS.Pasini,NewJ.Phys.12,045001(2010). 085206(2012). [50] Z.-Y.WangandR.-B.Liu,unpublished. [23] C.Barthel,J.Medford,C.M.Marcus,M.P.Hanson,andA.C. [51] P.W.Anderson,J.Phys.Soc.Jpn.9,316(1954). Gossard,Phys.Rev.Lett.105,266808(2010). [52] R.Kubo,J.Phys.Soc.Jpn.9,935(1954). [24] L.F.SantosandL.Viola,NewJ.Phys.10,083009(2008). [53] P.R.BermanandR.G.Brewer,Phys.Rev.A32,2784(1985). [25] Z.-Y.WangandR.-B.Liu,Phys.Rev.A83,022306(2011). [54] C.P.SunandX.J.Liu,ActaPhys.Sin.5,343(1996). [26] G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007), ibid, 106,