Niyama Based Taper Optimizations in Steel Alloy Castings A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering by Daniel A. Gorsky B.S.M.E., Purdue University, 2009 2011 Wright State University Wright StateUniversity GRADUATESCHOOL September9,2011 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Daniel A. Gorsky ENTITLED Niyama Based Taper Optimizations in Steel AlloyCastingsBEACCEPTEDINPARTIALFULFILLMENTOFTHEREQUIREMENTS FORTHEDEGREEOFMaster ofScience inEngineering. RamanaV.Grandhi,Ph.D. ThesisDirector GeorgeHuang,Ph.D. Chair,Mechanicaland MaterialsEngineering Committee on FinalExamination RamanaV.GrandhiPh.D. RaghavanSrinivasanPh.D. ScottK.ThomasPh.D. AndrewHsu,Ph.D. Dean,GraduateSchool ABSTRACT Gorsky, Daniel. M.S. Egr., Department of Mechanical and Materials Engineering, Wright State University, 2011.NiyamaBasedTaperOptimizationsinSteelAlloyCastings. In the casting process, regions of porosity can be reduced or eliminated through the implementation of taper, or small angled additions of mass on the boundaries of the part design,beforerisersareplacedonthecasting. Tapersupplementstheeffectofriserssothat asmallerriservolumeisnecessarytomakeacastingsound. Typically,taperisdetermined for a casting by using industry guidelines that were developed for simple two-dimensional simplificationsofacomplexcasting. Thereisnoacceptedmethodofdefiningtaperdirectly onpartgeometryasidefromusingexpertopinionstomakefinaldecisionsontaperlocations andsize. An optimization of taper geometries is performed on two-dimensional casting models to determine if a Niyama based optimization of taper directly on a part design is possible. TheNiyamacriterionidentifiessmallregionsofsolidificationshrinkagethatcorrespondto shrinkageporosityincastingsimulations. Thetaperoptimizationwasperformedonaplate with riser model and a spindle cross section model to determine the effectiveness of the optimization methodfor multiple geometries. Thisworkconcludesthattaperoptimization based on Niyama constraints is possible and effective, but care must be taken when deter- miningthedesignspaceofthetaper. Itwasfoundthatthesurfacecoolingratesofacasting can identify effective locations to taper so optimizations can be performed specifically on thesizeofthetapertoeliminateporosityinacasting. iii List of Symbols Ny Niyamavalue G Spatialthermalgradient T˙ Coolingrate T Niyamaevaluationtemperature eval T Solidustemperature s T LiquidusTemperature l T˙ Coolingratecalculatedanalytically average t Solidificationtime solidification T˙ Coolingratecalculatedbysimulation local Teval−1 Temperatureatthetimeincrement beforeTeval t IncrementtimewhereT occursinsimulation solid,inc eval x Designvariable m numberofdesignvariables y˜ Responsesurfaceequation β Responsesurfacecoefficient q Numberofresponsesurfacecoefficients β Vecorofresponsesurfacecoefficients q X Matrixofsimulateddesigns n,q y Vectorofresponsescorrespondingtosimulateddata N Numberofsampleresponsesurfaces p Numberofsampleddatapoints y Sampledresponsevector a y Excludedresponsevector b R2 Errorofsampledrespnosesurface norm w Weightofsampledresponsesurface y¯ Mean σ StandardDeviation S2 Commonvariance p t t-value S2 Variance H NullHypothesis o α Confidencelevel L LengthofPlate T ThicknessofPlate W WidthofPlate EZL EndZonelength RZL RiserZoneLength CZ CriticalZone R RiserRadius R H RiserHeight R A CriticalNiyamaArea crit,Ny N¯y AverageCritical NiyamaValue crit TG TaperGeometry iv Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 DocumentSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 LiteratureReviewandTheory 9 2.1 CastModelingBackground . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 TheNiyamaCriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 CastOptimization Background . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 ResponseSurfaceMethodology . . . . . . . . . . . . . . . . . . . 15 2.3.2 Weighted-StackResponseSurfaceMethodology . . . . . . . . . . 17 2.3.3 StatisticalComparisons . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 CastOptimization Literature . . . . . . . . . . . . . . . . . . . . . 19 2.4 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 SimulationModels 22 3.1 PlatewithRiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 FiniteElementModel . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.3 ModelResponses . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.4 Critical NiyamaValueforthePlateModel . . . . . . . . . . . . . . 31 3.2 SpindleCasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 FiniteElementModel . . . . . . . . . . . . . . . . . . . . . . . . 34 4 AnalysisandOptimization 37 4.1 PlateTaperGeometryOptimization . . . . . . . . . . . . . . . . . . . . . 37 4.2 SpindleGeometryOptimization . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 ParametricInvestigation . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 TwoVariableTaperOptimization . . . . . . . . . . . . . . . . . . 41 4.2.3 OneVariableTaperAnalysis . . . . . . . . . . . . . . . . . . . . . 42 v 5 ResultsandDiscussion 44 5.1 PlatewithRiserResultsandDiscussion . . . . . . . . . . . . . . . . . . . 44 5.1.1 TaperAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.2 DesignSpaceResponses . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.3 PlateGeometryResponses . . . . . . . . . . . . . . . . . . . . . . 57 5.2 ChoosingaDesignSpacefortheCasting . . . . . . . . . . . . . . . . . . . 61 5.3 SpindleResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.1 SpindleBaseAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 SpindleDesignSpaceDetermination . . . . . . . . . . . . . . . . 64 5.3.3 Two-VariableOptimization . . . . . . . . . . . . . . . . . . . . . . 67 5.3.4 One-VariableOptimization . . . . . . . . . . . . . . . . . . . . . . 73 6 Summary 77 7 FutureWork 79 Bibliography 79 8 Appendix: DataTables 84 vi List of Figures 1.1 CaterpillarInc. 777OffHighwayTruck[2] . . . . . . . . . . . . . . . . . 2 1.2 High-PressureDie-CastAluminum AlloyEngineBlock[3] . . . . . . . . . 2 1.3 CastingTerminology [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 RadiographViewofSandInclusions[5] . . . . . . . . . . . . . . . . . . . 5 1.5 RadiographViewofSpongyPorosity[5] . . . . . . . . . . . . . . . . . . . 6 3.1 3-DGearapproximated as2-DPlateGeometries[16] . . . . . . . . . . . . 23 3.2 ThreeDimensionalPlatewithRiserModel . . . . . . . . . . . . . . . . . . 24 3.3 Three-DimensionalGeometrywithTwo-DimensionalAssumptions . . . . 26 3.4 TwoDimensionalPlatewithRiserModel . . . . . . . . . . . . . . . . . . 27 3.5 TwoDimensionalPlateModelMesh . . . . . . . . . . . . . . . . . . . . . 28 3.6 CriticalNiyamaAreaMeshRefinement(Ny=0.7) . . . . . . . . . . . . . 30 3.7 CriticalNiyamaArea,Ny≤0.7(◦C-s)1/2/mm . . . . . . . . . . . . . . . . 32 3.8 CriticalNiyamaArea,Ny≤0.2(◦C-s)1/2/mm . . . . . . . . . . . . . . . . 32 3.9 SpindleGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.10 NiyamaProfileComparisonofSpindleModels . . . . . . . . . . . . . . . 35 3.11 SpindleFEMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1 PlateTaperOptimization DesignVariableDefinition . . . . . . . . . . . . 38 4.2 Spindlewith6DesignVariablesforTaperInvestigation . . . . . . . . . . . 40 4.3 SpindleDesignSpacesforTwo-VariableTaperOptimization . . . . . . . . 41 4.4 SpindleDesignSpacesforOne-VariableTaperOptimization . . . . . . . . 43 5.1 PlateAverageNiyamaValue((◦C-s)1/2/mm) ResponseSurface(Eq5.1) . . 45 5.2 PlateCritical NiyamaArea(mm2)ResponseSurface(Eq5.2) . . . . . . . . 47 5.3 RedbookSuggestedTaper . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4 PadNiyamaValuesEvaluatedatT . . . . . . . . . . . . . . . . . . . . 50 Eval 5.5 PadNiyamaValuesEvaluatedatT (Contour SideView) . . . . . . . . 51 Eval 5.6 PadTemperatureGradientsEvaluatedatT . . . . . . . . . . . . . . . . 52 Eval 5.7 PadTemperatureGradientsEvaluatedatT (Contour SideView) . . . . 52 Eval 5.8 PadCooling RatesEvaluatedatT . . . . . . . . . . . . . . . . . . . . 53 Eval 5.9 PadCooling RatesEvaluatedatT (ContourSideView) . . . . . . . . . 54 Eval 5.10 PadCooling RatesEvaluatedatT (ContourRotatedView) . . . . . . . 54 Eval vii 5.11 TG10CoolingRatesEvaluatedatT (Contour View) . . . . . . . . . . . 55 Eval 5.12 TG10CoolingRatesEvaluatedatT (Contour RotatedView) . . . . . . 56 Eval 5.13 TG2CoolingRatesEvaluatedatT (Contour View) . . . . . . . . . . . 57 Eval 5.14 TG2CoolingRatesEvaluatedatT (Contour RotatedView) . . . . . . . 57 Eval 5.15 NiyamaValuesofthePlateEvaluatedatT for3TaperGeometries . . . 58 Eval 5.16 CoolingRatesofthePlateEvaluatedatT for3TaperGeometries . . . . 59 Eval 5.17 ThermalGradientsofthePlateEvaluatedatT for3TaperGeometries . 60 Eval 5.18 PlatewithRiserModelEdgeCoolingRates . . . . . . . . . . . . . . . . . 62 5.19 BaseSpindleNiyamaProfile(CriticalNiyamaAreasCircled) . . . . . . . . 63 5.20 SpindleEdgeCoolingRates . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.21 ProposedSpindleTaperLengths . . . . . . . . . . . . . . . . . . . . . . . 66 5.22 AverageNiyamaValue1ResponseSurface . . . . . . . . . . . . . . . . . 68 5.23 CriticalNiyamaArea1ResponseSurface . . . . . . . . . . . . . . . . . . 69 5.24 AverageNiyamaValue3ResponseSurface . . . . . . . . . . . . . . . . . 70 5.25 CriticalNiyamaArea3ResponseSurface . . . . . . . . . . . . . . . . . . 70 5.26 AverageNiyamaValue4ResponseSurface . . . . . . . . . . . . . . . . . 71 5.27 CriticalNiyamaValue4ResponseSurface . . . . . . . . . . . . . . . . . . 72 5.28 One-VariableTaperHeightResults . . . . . . . . . . . . . . . . . . . . . . 76 viii List of Tables 3.1 RedbookPlateDimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 ProblemDefinition: FlatPlateTaperOptimization . . . . . . . . . . . . . . 39 4.2 SpindleParametricInvestigation Designs . . . . . . . . . . . . . . . . . . 41 4.3 ProblemDefinition: SpindleTwo-VariableTaperOptimization . . . . . . . 42 5.1 t-TestofPlateAverageNiyamaValues . . . . . . . . . . . . . . . . . . . . 46 5.2 t-TestofPlateCriticalNiyamaAreas . . . . . . . . . . . . . . . . . . . . . 47 5.3 ResponseSurfaceOptimization Results . . . . . . . . . . . . . . . . . . . 49 5.4 PadData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5 TG10Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.6 TG2Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.7 SpindleCriticalNiyamaArea1Optimization Results . . . . . . . . . . . . 67 5.8 CriticalNiyamaArea1: One-VariableAnalysis(TaperLength=650mm) . 73 5.9 CriticalNiyamaArea3: One-VariableAnalysis(TaperLength=277mm) . 75 5.10 CriticalNiyamaArea4: One-VariableAnalysis(TaperLength=277mm) . 75 8.1 FlatPlateTaperDesignsandResponses . . . . . . . . . . . . . . . . . . . 85 8.2 SpindleParametricInvestigation: AverageNiyamaValues . . . . . . . . . 86 8.3 SpindleParametricInvestigation: CriticalNiyamaNodeTotals . . . . . . . 87 8.4 SpindleParametricInvestigation: CriticalNiyamaAreas . . . . . . . . . . 88 8.5 CriticalRegion1: 2-VariableDesignsandResponses . . . . . . . . . . . . 89 8.6 CriticalRegion3: 2-VariableDesignsandResponses . . . . . . . . . . . . 89 8.7 CriticalRegion4: 2-VariableDesignsandResponses . . . . . . . . . . . . 90 8.8 t-TestofTwo-VariableA ResponseSurface . . . . . . . . . . . . . 90 crit,Ny,1 8.9 t-TestofTwo-VariableN¯y ResponseSurface . . . . . . . . . . . . . . 90 crit,1 8.10 t-TestofTwo-VariableA ResponseSurface . . . . . . . . . . . . . 90 crit,Ny,3 8.11 t-TestofTwo-VariableN¯y ResponseSurface . . . . . . . . . . . . . . 91 crit,3 8.12 t-TestofTwo-VariableA ResponseSurface . . . . . . . . . . . . . 91 crit,Ny,4 8.13 t-TestofTwo-VariableN¯y ResponseSurface . . . . . . . . . . . . . . 91 crit,4 ix Acknowledgement IwouldliketothankDr. Grandhiforwelcomingmeintohisresearchgrouptwoyearsago and for being my advisor. He has given me the opportunity to advance my engineering skillsandhehaspreparedmeforworkinginindustrytowhichIcannotthankhimenough. I would also like to thank Dr. Raghavan Srinivasan and Dr. Scott Thomas for being a part of my final thesis examination. Caterpillar Inc. is the organization that made this projectpossible,sothankyoufortheacademicopportunity. AlysounTaylor-Hallhasbeen integral in improving my technical writing skills...which is a reason that many of you are able to read this document! I would like to thank my parents especially for their constant moral support throughout the past two years. Thank you to Charles Monroe for his active presence in my work as well as Rick Huff for keeping my research focused. Last but not least, thank you to all of my friends and family that kept me motivated and proud of my work. Youallhavemadethisamemorable experience. x
Description: