Serial Editor Vincent Walsh InstituteofCognitiveNeuroscience UniversityCollegeLondon 17QueenSquare LondonWC1N3ARUK Editorial Board MarkBear, Cambridge, USA. Medicine& TranslationalNeuroscience Hamed Ekhtiari, Tehran, Iran. Addiction Hajime Hirase, Wako, Japan. NeuronalMicrocircuitry Freda Miller, Toronto,Canada. DevelopmentalNeurobiology ShaneO’Mara, Dublin, Ireland. Systems Neuroscience SusanRossell, Swinburne, Australia. Clinical Psychology&Neuropsychiatry Nathalie Rouach, Paris, France. Neuroglia Barbara Sahakian,Cambridge, UK. Cognition &Neuroethics Bettina Studer,Dusseldorf,Germany. Neurorehabilitation Xiao-Jing Wang, New York, USA. ComputationalNeuroscience Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA Firstedition2016 Copyright#2016ElsevierB.V.Allrightsreserved Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein. ISBN:978-0-444-63704-8 ISSN:0079-6123 ForinformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/ Publisher:ZoeKruze AcquisitionEditor:KirstenShankland EditorialProjectManager:HannahColford ProductionProjectManager:MageshKumarMahalingam Designer:GregHarris TypesetbySPiGlobal,India Contributors K. Arai NeuroprotectionResearchLaboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States D. Coman MagneticResonanceResearchCenter(MRRC),YaleUniversity,NewHaven,CT, United States N. Egawa NeuroprotectionResearchLaboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States M. Fukuda University ofPittsburgh,Pittsburgh,PA, United States P. Herman MagneticResonanceResearchCenter(MRRC),YaleUniversity,NewHaven,CT, United States E.Hillman KavliInstituteforBrainScience;MortimerB.ZuckermanInstituteforMindBrain and Behavior, Columbia University, New York, NY, United States H. Hirase RIKEN Brain Science Institute,Wako, Saitama, Japan Y. Hoshi Institute for Medical Photonics Research,Preeminent MedicalPhotonics Education &Research Center,Hamamatsu University School of Medicine, Hamamatsu, Japan H. Hotta Tokyo Metropolitan Instituteof Gerontology, Tokyo, Japan F. Hyder MagneticResonanceResearchCenter(MRRC),YaleUniversity,NewHaven,CT, United States I. Kanno Molecular Imaging Center,NationalInstitute ofRadiological Sciences, Chiba, Japan S.-G. Kim Center for NeuroscienceImaging Research, Institutefor BasicScience, SungkyunkwanUniversity, Suwon, SouthKorea M. Kozberg ColumbiaUniversity, New York, NY, United States T.Kurihara Keio University School ofMedicine, Tokyo, Japan v vi Contributors J. Lok NeuroprotectionResearchLaboratory;Massachusetts General Hospital and Harvard MedicalSchool,Charlestown, MA, UnitedStates K. Masamoto BrainScience Inspired Life Support ResearchCenter,University of Electro-Communications, Tokyo, Japan T. Nishijima TokyoMetropolitan University, Tokyo, Japan M. Nuriya KeioUniversity, Shinjuku,Tokyo, Japan A.J. Poplawsky University ofPittsburgh,Pittsburgh,PA, United States B.G. Sanganahalli MagneticResonanceResearchCenter(MRRC),YaleUniversity,NewHaven,CT, UnitedStates C.Y. Shu YaleUniversity, NewHaven,CT, United States H. Soya University ofTsukuba,Tsukuba,Japan I. Torres-Aleman CajalInstitute, Madrid, Spain K. Yamada HirosakiUniversity Graduate School of Medicine,Hirosaki, Aomori, Japan Preface Theabilityofassessingneuralactivitybymeasuringbraincirculationhasrevolution- izedthewaywestudythebrain.Sincecerebralhemodynamicscanbemeasurednon- invasively, ie, without physical damages to the brain, neurovascular coupling has become the principal means for understandingbrain function asshownby modern imaging techniques such as positron emission tomography (PET), functional mag- neticresonanceimaging(fMRI),andnear-infraredspectroscopy(fNIRS).Neverthe- less,themechanismsunderlyingtheneurovascularcouplinghavebeenstillwrapped inafascinatingmystery.Recent evidenceshavesuggestedthatneurovascularcou- plingparticipatesinthemaintenanceofnotonlybrainmetabolismbutalsocentral nervoussystemplasticity.Inthisvolume,wefeature11reviewarticlesonourlatest understandings of neurovascular coupling mechanisms as well as physiology from multiple aspects. The first three chapters provide “A physiological basis of neuro- vascular coupling,” namely Hotta (Chapter 1), Nuriya (Chapter 2), and Yamada (Chapter3)putperspectivesonthelatestfindingsinneurogenic,gliogenic,andvas- culogenic mechanisms of neurovascular coupling, respectively. The second topics titled “Methodology for measurements ofbrain circulation” are coveredby Kanno (Chapter 4), Hyder (Chapter 5), Fukuda (Chapter 6), and Hoshi (Chapter 7) who arguetechnologicalaspectsofneurovascularandneurometabolicimagingtoolsspe- cifically on the signal source issues in macroscopic and microscopic blood flow imaging modalities, calibrated and submillimeter-resolution, and fNIRS, respec- tively.Finally,thelastfourchaptersprovidethelatestviewsontherationaleofneu- rovascular couplingactivelyparticipating incell-to-cell communication tosupport neural plasticity in development, exercise, and aging processes, titled “Plastic changes in neurovascular coupling.” A new conceptual frame of trophic coupling amongdivergentbraincellsisreviewedfromtheviewpointsofneurovasculardevel- opmentbyArai(Chapter8)andHillman(Chapter10)andtheircolleagues.Kurihara (Chapter9)illustrateshowtheneurovascularcouplingdevelopsalongwithhypoxic signaling in the retina, which isconsidered one of the most accessible areas in the central nervous system. Moreover, plasticity on neurovascular coupling triggered byphysicalexercisesisreviewedindepthbyNishijima(Chapter11).Finally,given thecurrentprogressinthefieldofneurovascularcoupling,weprovideafutureper- spective: what further progress might lead tobreakthroughs. KazutoMasamoto Hajime Hirase Katsuya Yamada xv CHAPTER 1 Neurogenic control of parenchymal arterioles in the cerebral cortex H. Hotta1 TokyoMetropolitanInstituteofGerontology,Tokyo,Japan 1Correspondingauthor:Tel.:+81-3-39643241x4343;Fax:+81-3-35794776, e-mailaddress:[email protected] Abstract Centralneuralvasomotormechanismsactontheparenchymalvasculatureofthebraintoreg- ulateregionalcerebralbloodflow(rCBF).Amongthediversecomponentsofthelocalneural circuitsofthecerebralcortex,manymaycontributetotheregulationofrCBF.Forexample, thecholinergicvasodilativesystemthatoriginatesinthebasalforebrainactsontheneocortex andhippocampus.Notably,rCBFisreducedintheelderlyandpatientswithdementia.The vasodilatory response, independent of changes in blood pressure and glucose metabolism inthebrain,occursintheparenchymalarteriolestoproduceasignificantincreaseincortical rCBF.Recentstudiesilluminatethephysiologicalroleofthecholinergicvasodilatorsystem relatedtoneurovascularcoupling,neuroprotection,andpromotionofthesecretionofnerve growthfactor.Inthisreview,cellularmechanismsandspeciesdifferencesintheneurogenic controlofvascularsystems,aswellasbenefitsofthecholinergicvasodilatorysystemsagainst cerebral ischemia- and age-dependent impairment of neurovascular plasticity, are further discussed. Keywords Cerebralcortex,Basalforebrain,Cholinergic,Aging,Neuroprotection 1 INTRODUCTION Cerebralbloodflow(CBF)isanimportantfactorthatmaintainsbrainfunction,anda prolonged insufficiency causes degeneration and irreversible impairment of brain function.Inthebrainparenchyma,thereisawealthofbloodvessels.Approximately 15% of cardiac output flows through the brain that accounts for only 2% of body weight.VariousmechanismsmaintainCBFtosupportbrainactivity,andoneimpor- tantmechanismisneuralregulationofthecardiovascularsystem.Aswithanybody organ,brainbloodflowisdeterminedbyperfusionpressureandvascularresistance. 3 ProgressinBrainResearch,Volume225,ISSN0079-6123,http://dx.doi.org/10.1016/bs.pbr.2016.03.001 ©2016ElsevierB.V.Allrightsreserved. 4 CHAPTER 1 Neurogenic control of parenchymal arterioles Thebaroreceptorreflex,mediatedbytheautonomicnervoussystemconnectingthe heartandperipheralvasculature,preventsexcessivedecreasesinbloodpressureto ensureasufficientbloodsupplytothebrain.Thebrainvasculaturecanalsoreactto localconditionstoadjustbloodflow.Amajorthirdsourceofvascularcontrolinthe brainistheneurogeniccontrolofcerebralbloodvesselsgovernedbythesurrounding vasoactive nerves (Fig. 1). A Peripheral neural system Parasympathetic cholinergic nerve Sympathetic nerve Sphenopalatine ganglion Somatic sensory nerve Otic ganglion Pial arteriole B Subarachnoid space NO Pia matter Virchow–Robin space mAChR Interneuron Cerebral nAChR cortex ACh Local Central Penetrating arteriole neural circuite neural system Pyramidal cell Capillary Basal forebrain cholinergic neuron Subcortical areas Serotonergic neuron (raphe nucleus) Noradrenergic neuron (locus coeruleus) Glutamatergic neuron (thalamus, etc.) FIG.1 Neurogeniccontrolofcerebralbloodvessels.(A)Theperipheralneuralsysteminnervates largeintracranialandpialvesselsonthesurfaceofthebrain.(B)Thecentralneuralsystem comprisesnervesoriginatinginthebrainthatpassthroughthebrain,reachingthe parenchymalvessels(penetratingarteriolesandcapillaries). 2 Neurogenic control of intracortical rCBF 5 The neural system controlling cerebral blood vessels is divided into peripheral andcentralneuralsystems.Theperipheralneuralsystemcomprisesnervesoriginat- ingintheperipheralgangliaoutsidetheskull,ie,sympatheticandparasympathetic autonomicandsomaticsensorynerves(GoadsbyandEdvinsson,2002).Theperiph- eralneuralsysteminnervateslargeintracranialandpialvesselsonthesurfaceofthe brain(Fig.1A)andissufficientforregulatingoverallbloodflowtothebrain,which occursintheautonomicvascularregulationofperipheralnerves(eg,sciaticnerve; Sato et al., 1994). Incontrast,thecentralneuralsystemcomprisesnervesoriginatinginthebrainthat pass through the brain, reaching the parenchymal vessels (Fig. 1B). Because brain functions are compartmentalized, regional (r)CBF must be appropriately allocated. TherCBFcanberegulatedbychangesinthediameterofthepenetratingarteriolethat connectsthepialarterioleonthesurfaceofthebraintotheintraparenchymalcapillary. Theactivitiesofparenchymalneuronsoflocalneuralcircuits(seeSection2.1)con- tributetotheregulationofrCBFinassociationwiththoseofothercells,suchasas- trocytes (see Nuriya and Hirase, 2016, in this volume), vascular cells, or both (see Yamada, 2016, in this volume). Cellular organization differs among each area of thebrainparenchyma,andthemechanismsoflocalregulationofparenchymalblood vesselsvaryaccordingly.Forexample,onecomponentofthecentralneuralsystemis thecholinergicvasodilativesystemthatoriginatesinthebasalforebrainandactsspe- cificallyonthecortexandhippocampusthatisvulnerabletotransientischemia,aging, andneurodegenerativediseases(SatoandSato,1992).Thevasodilativeresponse,in- dependentofchangesinbloodpressureandglucosemetabolisminthebrain,occursat theparenchymalpenetratingarterioles(Hottaetal.,2013)tomarkedlyincreasecor- ticalrCBF.Importantly,thephysiologicalroleofthecholinergicvasodilativesystem relatedtoneurovascularcoupling(Pich(cid:1)eetal.,2010)andneuroprotection(Hottaetal., 2002) is also associated with increased secretion of the nerve growth factor (NGF; Hottaetal.,2007a,2009a). This review is principally focused on the cholinergic vasodilative system that originates in the basal forebrain and recent studies related to neural regulation of the cerebralcortical (partly hippocampal) parenchymal arterioles. 2 NEUROGENIC CONTROL OF INTRACORTICAL rCBF 2.1 LOCAL NEURAL CIRCUITS OF THE CEREBRAL CORTEX Localneuralcircuitsofthecerebralcortexcomprisepyramidalcells,nonpyramidal cells, excitatory fibers from other cortical areas and thalamus, and other afferent fiberssuchascholinergicfibersfromthebasalforebrain(nucleusbasalisofMeynert [NBM]),serotonergicfibersfromtheraphenucleusofthemidbrain,noradrenergic fibersfromthelocusceruleus,anddopaminergicfibersfromtheventraltegmental area(Nieuwenhuysetal.,2008).Manyoftheseneuralcomponentsmaycontributeto the regulation of rCBF (see reviews of Sato and Sato, 1992; Hillman, 2014). 6 CHAPTER 1 Neurogenic control of parenchymal arterioles Pyramidal cells are glutamatergic excitatory output cells located in layers II/III, V,andVI.ExcitatorycellsinlayerIVaremainlyspinystellateandstarpyramidal cells.Theactivitiesoftheseexcitatoryoutputcellsareregulatedbyinhibitorynon- pyramidalcellsthroughtheirinhibitoryneurotransmittergammaaminobutyricacid (GABA).Theseinhibitoryinterneurons,whicharedistributedthroughallsixlayers, represent approximately 10–30% of the neuronal population (the percentages vary amongcorticallayers,areas,andspecies)andareclassifiedintodifferentsubtypes basedonmorphology(eg,basket,chandelier,andMartinotticells),firingcharacter- istics (eg, fast or irregular spiking), and expression of specific molecular markers (eg, vasoactive intestinal peptide [VIP], parvalbumin, and somatostatin [SOM]; Fig. 2)(DeFelipeet al., 2013;Kubota et al., 2011). yer I AAc CR VIP a NNOOSS L PV SOM VVIIPP CR (VVA binding) er II/III NPY CRF y c a A L A CCK NNOOSS SPR NOS PV SOM CR Y (VVA binding) P V N ayer CRF VIP L SPR NNOOSS NOS CCK PV NPY SOM CR (VVA binding) yer VI SPR CRF VIP La Ac NOS A NNOOSS CCK FIG.2 SignalingmoleculesexpressedbyGABAergiccellsinthefrontalcortex.Therelative numberofcellsthatexpresseachmoleculeisproportionaltothesizeoftheboxineachlayer. Deep(grayintheprintversion)andlightblue(lightgrayintheprintversion)indicate strongandweakNOSexpression,respectively(Kubotaetal.,2011). 2 Neurogenic control of intracortical rCBF 7 2.2 CHANGES IN rCBF INDUCED BY THE ACTIVITY OF CORTICAL NEURONS TheelectricalactivityofthebraincorrelatesstronglywithchangesinrCBF,andsub- threshold synaptic processes correlate more closely to rCBF than the spike rates of principal neurons (Lauritzen et al., 2012; see Fukuda et al., 2016, in this volume). Whenpyramidalcellsareselectivelyactivatedbyoptogeneticstimulation,synapticac- tivity(localfieldpotential)andactionpotentials(multiunitactivity)aretightlyrelated tohemodynamicsignals(Jietal.,2012).AnincreaseincorticalrCBFinmice,induced by optogenetic stimulation of pyramidal cells, is reduced by a cyclooxygenase-2 (COX2) inhibitor, suggesting that COX2-generated prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the cortex (Lacroix etal.,2015). AmongvarioussubtypesofcorticalGABAinterneurons(Fig.2),specificsubsets controlparenchymalvesseldiameter(Caulietal.,2004).Inslicesofbrainharvested fromneonatalrats,bloodvesselsintheplanefromlayersI–IIIwithdiametersrang- ing from 5 to 30mm were selected, and single interneurons (layers I–III) within 40mmofthe selected vesselwere recorded inwhole-cell configuration. Thefiring of single interneurons ((cid:1)8Hz induced by current for 30 or 120s) either dilates or constricts neighboring microvessels in 13/149 neurons tested. The 13 interneurons weresubjectedtosingle-cellreversetranscriptase-multiplexpolymerasechainreac- tionanalysis,andthedatashowthatinterneuronsthatinduceddilatationexpressVIP or nitric oxide synthase (NOS), whereas SOM is expressed by those that induce contraction.Further,theresultsofinvivoexperimentsshowthatdirectoptogenetic activation of cortical inhibitory neurons increases local rCBF (Anenberg et al., 2015).Inmicethatexpresschannelrhodopsin-2inGABAergicneurons,optogenetic cortical stimulation greatly attenuates spontaneous cortical spikes, whereas laser specklecontrastimagingrevealedthatbloodflowisincreased.Theoptogenetically evokedrCBFresponsesarenotaffectedbyapplicationtothecortexofglutamatergic (NBQXandMK-801)andGABA-Areceptor(picrotoxin)antagonists.Theseresults suggestthatactivationofcorticalinhibitoryinterneuronsmediateslargechangesin blood flow independent of ionotropic glutamatergic or GABAergic synaptic trans- mission,likelyby releasingcoexpressed vasoactive transmitters. 2.3 CHOLINERGIC VASODILATION INDUCED BY AFFERENT FIBERS FROM THE BASAL FOREBRAIN StimulationofbasalforebraincholinergicnucleiproducesanincreaseinrCBFinthe cortical parenchyma through the activation of muscarinic (mAChR) and nicotinic (nAChR) cholinergic receptors within the blood–brain barrier (BBB; Biesold et al., 1989). Further, synthesis of nitric oxide (NO) is essential for this response (Adachietal.,1992b;Raszkiewiczetal.,1992).Thesignificantincreaseincortical rCBFduringbasalforebrainstimulation,independentofchangesinsystemicblood pressure,isuncoupledfromcorticalglucosemetabolisminanesthetized(Hallstr€om