NEW HORIZONS IN GEOMETRY AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 11 1100//88//1122 99::3300 AAMM (cid:2)c 2012by The MathematicalAssociationof America (Incorporated) Illustrations (cid:2)c Mamikon A. Mnatsakanian Library of Congress CatalogCard Number 2012949754 Print Edition ISBN 978-0-88385-354-2 Electronic Edition ISBN 978-1-61444-210-3 Printedin South Korea by Charles Allen Imaging Experts, Pasadena, CA Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 22 1100//88//1122 99::3300 AAMM The DolcianiMathematicalExpositions NUMBER FORTY-SEVEN NEW HORIZONS IN GEOMETRY Tom M. Apostol California Institute of Technology and Mamikon A. Mnatsakanian California Institute of Technology Published and Distributed by The Mathematical Association of America AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 33 1100//88//1122 99::3300 AAMM The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association fromMaryP.Dolciani,ProfessorofMathematicsatHunterCollegeoftheCityUni- versityofNewYork. Inmakingthegift,Professor Dolciani,herselfanexceptionally talentedandsuccessful expositorofmathematics,hadthe purpose offurtheringthe ideal of excellence in mathematical exposition. The Association, for its part, was delighted to accept the gracious gesture initi- atingtherevolvingfundforthisseriesfromonewhohasservedtheAssociationwith distinction, both as a member of the Committee on Publications and as a member of the Board of Governors. It was with genuine pleasure that the Board chose to name the series in her honor. The books in the series are selected for their lucid expository style and stimu- lating mathematicalcontent. Typically,they contain an ample supply of exercises, manywithaccompanyingsolutions. Theyareintendedtobesufficientlyelementary for the undergraduate and even the mathematicallyinclinedhigh-schoolstudent to understand and enjoy, but also to be interesting and sometimes challenging to the more advanced mathematician. Committee on Books Frank Farris, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley,Editor Jeremy S. Case RosalieA. Dance Christopher Dale Goff Thomas M. Halverson Michael J. McAsey Michael J. Mossinghoff Jonathan Rogness Elizabeth D. Russell Robert W. Vallin AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 44 1100//88//1122 99::3300 AAMM 1. MathematicalGems,Ross Honsberger 2. MathematicalGems II,Ross Honsberger 3. MathematicalMorsels,Ross Honsberger 4. MathematicalPlums,Ross Honsberger (ed.) 5. GreatMoments in Mathematics (Before1650),Howard Eves 6. Maxima andMinima withoutCalculus,Ivan Niven 7. GreatMoments in Mathematics (After1650),Howard Eves 8. Map Coloring,Polyhedra,and the Four-ColorProblem,David Barnette 9. MathematicalGems III,Ross Honsberger 10. More MathematicalMorsels,Ross Honsberger 11. Old and New Unsolved Problems in Plane Geometry and Number Theory, VictorKlee and Stan Wagon 12. Problemsfor Mathematicians,YoungandOld,Paul R. Halmos 13. Excursions in Calculus: An Interplay of the Continuous and the Discrete, Robert M.Young 14. The Wohascum County Problem Book, George T. Gilbert, Mark Krusemeyer, and Loren C.Larson 15. Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H.Mugler 16. LinearAlgebraProblem Book,Paul R.Halmos 17. From Erdo˝s to Kiev: Problemsof Olympiad Caliber,Ross Honsberger 18. WhichWay Did the BicycleGo? ...andOther IntriguingMathematicalMysteries, Joseph D. E. Konhauser, Dan Velleman,and Stan Wagon 19. In P´olya’sFootsteps: MiscellaneousProblemsand Essays,Ross Honsberger 20. Diophantus and Diophantine Equations, I. G. Bashmakova (Updated by Joseph Silverman and translated by Abe Shenitzer) 21. Logicas Algebra,Paul Halmos and Steven Givant 22. Euler: The Master of Us All,William Dunham 23. The Beginnings and Evolution of Algebra, I. G. Bashmakova and G. S. Smirnova (Translated by Abe Shenitzer) 24. MathematicalChestnutsfrom Aroundthe World,Ross Honsberger 25. CountingonFrameworks: MathematicstoAidtheDesignofRigidStructures,Jack E.Graver 26. MathematicalDiamonds,Ross Honsberger 27. ProofsthatReallyCount: TheArtofCombinatorialProof,ArthurT.Benjaminand Jennifer J.Quinn 28. MathematicalDelights,Ross Honsberger 29. Conics,Keith Kendig 30. Hesiod’sAnvil: fallingand spinningthroughheavenandearth,Andrew J.Simoson 31. A Gardenof Integrals,Frank E.Burk 32. A Guideto Complex Variables (MAA Guides #1), Steven G.Krantz 33. Sinkor Float? ThoughtProblemsin Math and Physics,Keith Kendig 34. Biscuitsof Number Theory,Arthur T.Benjamin and Ezra Brown 35. UncommonMathematicalExcursions: PolynomiaandRelatedRealms,DanKalman 36. When Less is More: Visualizing Basic Inequalities, Claudi Alsina and Roger B. Nelsen AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 55 1100//88//1122 99::3300 AAMM 37. A Guideto AdvancedReal Analysis (MAAGuides #2),Gerald B. Folland 38. A Guideto Real Variables (MAA Guides #3), Steven G.Krantz 39. Voltaire’s Riddle: Microm´egas and the measure of all things, Andrew J. Simoson 40. A Guideto Topology,(MAAGuides #4),Steven G. Krantz 41. A Guideto ElementaryNumber Theory,(MAA Guides #5), Underwood Dudley 42. Charming Proofs: A Journey into Elegant Mathematics, Claudi Alsina and Roger B.Nelsen 43. Mathematicsand Sports,edited by Joseph A.Gallian 44. A Guideto AdvancedLinearAlgebra,(MAAGuides #6),Steven H.Weintraub 45. Icons of Mathematics: An Exploration of Twenty Key Images, Claudi Alsina and Roger B. Nelsen 46. A Guideto PlaneAlgebraicCurves,(MAA Guides #7), KeithKendig 47. New Horizonsin Geometry,TomM. Apostol and Mamikon A.Mnatsakanian 48. A Guideto Groups,Rings,and Fields,(MAAGuides #8),Fernando Gouvˆea MAAService Center P.O.Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX:1-301-206-9789 AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 66 1100//88//1122 99::3300 AAMM CONTENTS* Preface ...................................................................... ix Introduction ................................................................. xi Foreword .................................................................... xiii Chapter 1. Mamikon’s Sweeping -Tangent Theorem ......................... 1 Chapter 2. Cycloids and Trochoids .......................................... 31 Chapter 3. Cyclogons and Trochogons ....................................... 65 Chapter 4. Circumgons and Circumsolids .................................... 101 Chapter 5. The Method of Punctured Containers ............................ 135 Chapter 6. Unwrapping Curves from Cylinders and Cones ................... 169 Chapter 7. New Descriptions of Conics via Twisted Cylinders, Focal Disks, and Directors ............................................... 213 Chapter 8. Ellipse to Hyperbola: “With This String I Thee Wed” ........... 243 Chapter 9. Trammels ........................................................ 267 Chapter 10. Isoperimetric and Isoparametric Problems ...................... 295 Chapter 11. Arclength and Tanvolutes .......................................331 Chapter 12. Centroids ....................................................... 375 Chapter 13. New Balancing Principles with Applications .................... 401 Chapter 14. Sums of Squares ................................................ 443 Chapter 15. Appendix ....................................................... 473 Bibliography ................................................................ 501 Index ....................................................................... 505 About the Authors .......................................................... 513 *Detailed contents for each chapter appear at the beginning ofthe chapter vii AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 77 1100//88//1122 99::3300 AAMM AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 88 1100//88//1122 99::3300 AAMM PREFACE This book is a compendium of joint work produced by the authors during the pe- riod1998–2012,mostofit published intheAmerican Mathematical Monthly, Math Horizons, Mathematics Magazine, and The Mathematical Gazette. The published papershavebeenedited,augmented,andrearrangedinto15chapters. Eachchapter ispreceded byasampleofproblemsthatcanbesolvedbythemethodsdevelopedin thatchapter. Eachopeningpagecontainsabriefabstract ofthe chapter’scontents. Chapter 1, entitled “Mamikon’sSweeping-Tangent Theorem,” was the starting pointofthiscollaboration. Itdescribesaninnovativeandvisualapproachforsolving manystandardcalculusproblemsbyageometricmethodthatmakeslittleornouse of formulas. The method was conceived in 1959 by my co-author (who prefers to be called Mamikon),when he was an undergraduate student at Yerevan University in Armenia. When young Mamikon showed his method to Soviet mathematicians they dismissed it out of hand and said “It can’t be right. You can’t solve calculus problems that easily.” Mamikonwent onto get a Ph.D.in physics, was appointeda professor ofastro- physicsattheUniversityofYerevan,andbecameaninternationalexpertinradiative transfer theory,allthewhilecontinuingtodevelophispowerfulgeometricmethods. Mamikoneventuallypublishedapaper outliningthemin1981,butitseems tohave escaped notice, probably because it appeared in Russian in an Armenian journal with limitedcirculation. (Reference [59]in the Bibliography.) Mamikoncame to Californiain 1990to learn more about earthquake prepared- ness for Armenia. When the Soviet government collapsed he was stranded in the UnitedStates withoutavisa. Withthe helpofafewmathematicianshehadmetin Sacramento andat UC Davisandwho recognized hisremarkabletalents,Mamikon was granted status as an “alien of extraordinary ability.” While working at UC Davis and for the California Department of Education, he further developed his methods into a universal teaching tool using hands-on and computer activities, as wellas diagrams. He has taught these methods at UC Davisand in Northern Cali- fornia classrooms, ranging from Montessori elementary schools to inner-city public high schools, and he has demonstrated them at teacher conferences. Students and teachers alike have responded enthusiastically, because the methods are vivid and dynamic and don’t require the algebraic formalismof trigonometry or calculus. A few years later,Mamikonvisited Caltech andconvinced me that hismethods havethepotentialtomakeasignificantimpactonmathematicseducation,especially if they are combined with visualizationtools of modern technology. Since then, we ix AAppoossttoollGGeeoo aaFFrroonnttMMaatttteerr__vv22..iinndddd 99 1100//88//1122 99::3300 AAMM
Description: