New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic & Plithogenic Optimizations Edited by Florentin Smarandache and Yanhui Guo Printed Edition of the Special Issue Published in Symmetry www.mdpi.com/journal/symmetry New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic Plithogenic Optimizations New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic Plithogenic Optimizations Editors Florentin Smarandache Yanhui Guo MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin Editors FlorentinSmarandache YanhuiGuo Mathematics DepartmentofComputer UniversityofNewMexico Science Gallup UniversityofIllinois UnitedStates Springfield UnitedStates EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalSymmetry (ISSN 2073-8994) (available at: www.mdpi.com/journal/symmetry/special issues/Neutrosophic Probability Statistics Algebraic Structures Plithogenic). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-2955-4(Hbk) ISBN978-3-0365-2954-7(PDF) © 2022 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Preface to ”New Development of Neutrosophic Probability, Neutrosophic Statistics, NeutrosophicAlgebraicStructures,andNeutrosophic PlithogenicOptimizations” . . . . . . ix XinZhou,PingLi,FlorentinSmarandacheandAhmedMostafaKhalil NewResultsonNeutrosophicExtendedTripletGroupsEquippedwithaPartialOrder Reprintedfrom: Symmetry2019,11,1514,doi:10.3390/sym11121514 . . . . . . . . . . . . . . . . . 1 GuanshengYu,ShouzhenZengandChonghuiZhang Single-Valued Neutrosophic Linguistic-Induced Aggregation Distance Measures and Their ApplicationinInvestmentMultipleAttributeGroupDecisionMaking Reprintedfrom: Symmetry2020,12,207,doi:10.3390/sym12020207 . . . . . . . . . . . . . . . . . 15 AshrafAl-Quran,HazwaniHashimandLazimAbdullah AHybridApproachofIntervalNeutrosophicVagueSetsandDEMATELwithNewLinguistic Variable Reprintedfrom: Symmetry2020,12,275,doi:10.3390/sym12020275 . . . . . . . . . . . . . . . . . 29 Vasantha W. B., Ilanthenral Kandasamy, Florentin Smarandache, Vinayak Devvrat and ShivamGhildiyal StudyofImaginativePlayinChildrenUsingSingle-ValuedRefinedNeutrosophicSets Reprintedfrom: Symmetry2020,12,402,doi:10.3390/sym12030402 . . . . . . . . . . . . . . . . . 45 MajidKhan,MuhammadGulistan,MumtazAliandWathekChammam The Generalized Neutrosophic Cubic Aggregation Operators and Their Application to Multi-ExpertDecision-MakingMethod Reprintedfrom: Symmetry2020,12,496,doi:10.3390/sym12040496 . . . . . . . . . . . . . . . . . 63 WeiYang,LuluCai,SeyedAhmadEdalatpanahandFlorentinSmarandache Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital PerformanceMeasurement Reprintedfrom: Symmetry2020,12,588,doi:10.3390/sym12040588 . . . . . . . . . . . . . . . . . 79 NguyenThoThong,FlorentinSmarandache,NguyenDinhHoa,LeHoangSon,LuongThi HongLanandCuNguyenGiapetal. A Novel Dynamic Multi-Criteria Decision Making Method Based on Generalized Dynamic Interval-ValuedNeutrosophicSet Reprintedfrom: Symmetry2020,12,618,doi:10.3390/sym12040618 . . . . . . . . . . . . . . . . . 93 XiaohongZhang,WangtaoYuan,MingmingChenandFlorentinSmarandache A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski AssociativeNeutrosophicExtendedTripletGroupoids(TA-NET-Groupoids) Reprintedfrom: Symmetry2020,12,714,doi:10.3390/sym12050714 . . . . . . . . . . . . . . . . . 113 VasanthaW.B.,IlanthenralKandasamyandFlorentinSmarandache NeutrosophicComponentsSemigroupsandMultisetNeutrosophicComponentsSemigroups Reprintedfrom: Symmetry2020,12,818,doi:10.3390/sym12050818 . . . . . . . . . . . . . . . . . 133 v Abdul Alamin, Sankar Prasad Mondal, Shariful Alam, Ali Ahmadian, Soheil Salahshour andMehdiSalimi SolutionandInterpretationofNeutrosophicHomogeneousDifferenceEquation Reprintedfrom: Symmetry2020,12,1091,doi:10.3390/sym12071091 . . . . . . . . . . . . . . . . . 145 CahitAslan,AbdullahKargınandMemetS¸ahin NeutrosophicModelingofTalcottParsons’sActionandDecision-MakingApplicationsforIt Reprintedfrom: Symmetry2020,12,1166,doi:10.3390/sym12071166 . . . . . . . . . . . . . . . . . 171 Ahmed Mostafa Khalil, Dunqian Cao, Abdelfatah Azzam, Florentin Smarandache and WedadR.Alharbi Combination of the Single-Valued Neutrosophic Fuzzy Set and the Soft Set with Applications inDecision-Making Reprintedfrom: Symmetry2020,12,1361,doi:10.3390/sym12081361 . . . . . . . . . . . . . . . . . 191 ShchurIryna,YuZhong,WenJiang,XinyangDengandJieGeng Single-ValuedNeutrosophicSetCorrelationCoefficientandItsApplicationinFaultDiagnosis Reprintedfrom: Symmetry2020,12,1371,doi:10.3390/sym12081371 . . . . . . . . . . . . . . . . . 209 YumingGong,ZeyuMa,MeijuanWang,XinyangDengandWenJiang A New Multi-Sensor Fusion Target Recognition Method Based on Complementarity Analysis andNeutrosophicSet Reprintedfrom: Symmetry2020,12,1435,doi:10.3390/sym12091435 . . . . . . . . . . . . . . . . . 223 YaserSaber,FahadAlsharariandFlorentinSmarandache OnSingle-ValuedNeutrosophicIdealsinSˇostakSense Reprintedfrom: Symmetry2020,12,193,doi:10.3390/sym12020193 . . . . . . . . . . . . . . . . . 241 YaserSaber,FahadAlsharari,FlorentinSmarandacheandMohammedAbdel-Sattar ConnectednessandStratificationofSingle-ValuedNeutrosophicTopologicalSpaces Reprintedfrom: Symmetry2020,12,1464,doi:10.3390/sym12091464 . . . . . . . . . . . . . . . . . 261 Kritika Mishra, Ilanthenral Kandasamy, Vasantha Kandasamy W. B. and Florentin Smarandache ANovelFrameworkUsingNeutrosophyforIntegratedSpeechandTextSentimentAnalysis Reprintedfrom: Symmetry2020,12,1715,doi:10.3390/sym12101715 . . . . . . . . . . . . . . . . . 281 MuhammadRayeesAhmad,MuhammadSaeed,UsmanAfzalandMiin-ShenYang A Novel MCDM Method Based on Plithogenic Hypersoft Sets under Fuzzy Neutrosophic Environment Reprintedfrom: Symmetry2020,12,1855,doi:10.3390/sym12111855 . . . . . . . . . . . . . . . . . 303 DongsikJo,S.Saleh,Jeong-GonLee,KulHurandChenXueyou TopologicalStructuresviaInterval-ValuedNeutrosophicCrispSets Reprintedfrom: Symmetry2020,12,2050,doi:10.3390/sym12122050 . . . . . . . . . . . . . . . . . 327 FahadAlsharari £-SingleValuedExtremallyDisconnectedIdealNeutrosophicTopologicalSpaces Reprintedfrom: Symmetry2020,13,53,doi:10.3390/sym13010053 . . . . . . . . . . . . . . . . . . 357 BhimrajBasumatary,NijwmWary,DimachaDwibrangMwchahary,AshokeKumarBrahma, JwngsarMoshaharyandUshaRaniBasumataryetal. AStudyonSomePropertiesofNeutrosophicMultiTopologicalGroup Reprintedfrom: Symmetry2021,13,1689,doi:10.3390/sym13091689 . . . . . . . . . . . . . . . . . 375 vi About the Editors FlorentinSmarandache FlorentinSmarandacheisaprofessorofmathematicsattheUniversityofNewMexico, United States. He received his MSc in Mathematics and Computer Science from the University of Craiova, Romania, PhD in Mathematics from the State University of Kishinev, and Postdoctoral in Applied Mathematics from Okayama University of Sciences, Japan, and The Guangdong University of Technology, Guangzhou, China. He has been the founder of neutrosophy (generalization of dialectics), neutrosophicset, logic, probabilityandstatisticssince1995andhaspublishedhundreds of papers and books on neutrosophic physics, superluminal and instantaneous physics, unmatter, quantumparadoxes,absolutetheoryofrelativity,redshiftandblueshiftduetothemediumgradient and refraction index in addition to the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, multispace and multistructure, hypersoft sets, degree of dependence and independence between neutrosophic components, refined neutrosophic sets, neutrosophic over-under-off-sets, plithogenic sets / logic / probability / statistics, neutrosophic triplet and duplet structures, quadruple neutrosophic structures, extension of algebraic structures to NeutroAlgebras and AntiAlgebras, NeutroGeometry and AntiGeometry, Dezert–Smarandache Theory, and so on to many peer-reviewed international journals and many books and he has presented papers and plenary lectures at many international conferences around theworld. In addition, he has published many books of poetry, drama, children’s stories, translations, essays, a novel, folklore collections, traveling memories, and art albums (http://fs.unm.edu/FlorentinSmarandache.htm). YanhuiGuo YanhuiGuoreceivedhisB.S.degreeinAutomaticControlfromZhengzhouUniversity,China, M.S. degree in Pattern Recognition and Intelligence System from Harbin Institute of Technology, China, and Ph.D. degree in the Department of Computer Science, Utah State University, USA. He wasaresearchfollowintheDepartmentofRadiologyattheUniversityofMichiganandanassistant professorinSt. ThomasUniversity. Dr. GuoiscurrentlyanassistantprofessorintheDepartmentof ComputerScienceattheUniversityofIllinoisatSpringfield. Dr. Guohaspublishedmorethan100 journal papers and 30 conference papers, completed more than 10 grant-funded research projects, andworkedasanassociateeditorofdifferentinternationaljournals,areviewerfortopjournalsand hasbeenapartofmanyconferences. Hisresearchareasincludecomputervision,machinelearning, bigdataanalytics,andcomputer-aideddetection/diagnosis. vii Preface to ”New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic Plithogenic Optimizations” ThisSpecialIssuepresentsstate-of-the-artpapersonnewtopicsrelatedtoneutrosophictheories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraicstructures,neutrosophicimageprocessing,neutrosophicimageclassification,neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic dataanalytics,neutrosophicdeeplearning,andneutrosophicsymmetry,aswellastheirapplications intherealworld. The neutrosophic extended triplet group (NETG) is a novel algebra structure studied here by Xin Zhou, Ping Li, Florentin Smarandache and Ahmed Mostafa Khalil in an article (Results on Neutrosophic Extended Triplet Groups Equipped with a Partial Order) presenting the concept of a partially ordered neutrosophic extended triplet group (po-NETG), considering the properties and structure features of po-NETGs. The authors propose the concepts of the positive cone and negative cone in a po-NETG, study the specificity of the positive cone in a partially ordered weak commutative neutrosophic extended triplet group (po-WCNETG), and introduce the concept of a po-NETGhomomorphismbetweentwopo-NETGs. In the next selected paper (Single-Valued Neutrosophic Ideals in Sˇostak Sense), Yaser Saber, Fahad Alsharari and Florentin Smarandache introduce the notion of single-valued neutrosophic ideals sets in Sˇostak’s sense, and then the concept of a single-valued neutrosophic ideal open local functionfor asingle-valuedneutrosophic topologicalspace, studying thebasicstructure, especially a basis for such generated single-valued neutrosophic topologies and several relations between different single-valued neutrosophic ideals and single-valued neutrosophic topologies. For the purposeofsymmetry,theauthorsalsodefinethesingle-valuedneutrosophicrelations. Guansheng Yu, Shouzhen Zeng and Chonghui Zhang study the single-valued neutrosophic linguistic distance measures based on the induced aggregation method in their paper (-Valued Neutrosophic Linguistic-Induced Aggregation Distance Measures and Their Application in InvestmentMultipleAttributeGroupDecisionMaking), suggestinganewextensionoftheexisting distance measures based on the induced aggregation view, namely the single-valued neutrosophic linguistic-induced ordered weighted averaging distance (SVNLIOWAD) measure. Based on SVNLIOWAD,inordertoeliminatethedefectsoftheexistingmethods,theauthorsdevelopanovel induceddistanceforsingle-valuedneutrosophiclinguisticsets,calledthesingle-valuedneutrosophic linguistic weighted induced ordered weighted averaging distance (SVNLWIOWAD). Then, the relationship between the two proposed distance measures is explored, and a numerical example concerning an investment selection problem is constructed to prove the efficiency of the proposed methodunderasingle-valuedneutrosophiclinguisticenvironment. AshrafAl-Quran,HazwaniHashimandLazimAbdullahextend,inthepaperHybridApproach ix