ebook img

New concepts and trends of hybrid multiple criteria decision making PDF

363 Pages·2017·5.611 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New concepts and trends of hybrid multiple criteria decision making

New Concepts and Trends of Hybrid Multiple Criteria Decision Making New Concepts and Trends of Hybrid Multiple Criteria Decision Making By Gwo-Hshiung Tzeng and Kao-Yi Shen CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-7708-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging- in- Publication Data Names: Tzeng, Gwo-Hshiung, author. Title: New concepts and trends of hybrid multiple criteria decision making / Gwo-Hshiung Tzeng and Kao-Yi Shen. Description: New York : CRC Press, 2017. Identifiers: LCCN 2017000939 | ISBN 9781498777087 (hbk : alk. paper) Subjects: LCSH: Multiple criteria decision making. | Decision making. | Problem solving. Classification: LCC T57.95 .T94 2017 | DDC 658.4/03--dc23 LC record available at https://lccn.loc.gov/2017000939 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ...............................................................................................................xi Authors ...........................................................................................................xiii 1 Introduction ..........................................................................................1 1.1 Overview of Traditional MCDM Techniques and Methods ............1 1.2 Statistics versus MCDM Approach ..................................................4 1.3 History of MADM ..........................................................................5 1.4 History of MODM ..........................................................................8 1.5 Developments in Computational Intelligence, Machine Learning, and Soft Computing for Decision Aids ..........................10 1.5.1 Basic Concepts of Fuzzy Sets .............................................13 1.5.2 Basic Notions of Rough Sets ..............................................14 1.6 Emerging Trend in Multiple Rule-Based Decision Making ............16 1.7 Outline of the Book ........................................................................19 SeCtion i ConCePtS AnD tHeoRY 2 New Concepts and Trends in MCDM .................................................23 2.1 Problem Solving in Traditional MCDM .........................................25 2.2 Why New Hybrid MCDM Approaches Are Needed .....................26 2.3 Framework of New Hybrid MCDM Models for Tomorrow ..........28 3 Basic Concepts of DEMATEL and Its Revision ..................................35 3.1 Background and Basic Notions of DEMATEL .............................36 3.2 Operational Steps of the Original DEMATEL ..............................36 3.3 Infeasibility of the Original DEMATEL Technique ......................39 3.4 Revised DEMATEL ......................................................................40 3.5 Two Numerical Examples ..............................................................41 3.6 Conclusion .....................................................................................47 4 DEMATEL Technique for Forming INRM and DANP Weights ........49 4.1 Methodology for Assessing Real-World Problems ..........................49 4.2 Constructing an Influential Network Relations Map ....................50 4.3 Determining Influential Weights Using DANP .............................55 v vi ◾ Contents 4.4 Problem Solving for Ranking or Selection Decision by INRM and DANP .....................................................................................57 4.5 Conclusion ....................................................................................58 5 Traditional MADM and New Hybrid MADM for Problem Solving ......61 5.1 Traditional MADM for Ranking and Selection .............................61 5.1.1 AHP and ANP ..................................................................62 5.2 New Hybrid Modified MADM .....................................................63 5.2.1 DEMATEL-Based ANP Instead of AHP and ANP..........64 5.2.2 Modified VIKOR for Measuring Performance Gaps ..........65 5.3 Additive and Nonadditive Types of Aggregators ............................68 5.3.1 Additive-Type Aggregators ................................................68 5.3.2 Nonadditive-Type Aggregators (Fuzzy Integrals) ...............68 5.4 Conclusion ....................................................................................72 6 MODM with De Novo and Changeable Spaces ..................................73 6.1 Basic Concepts and Trends of MODM ..........................................74 6.2 De Novo Programming .................................................................78 6.3 MOP with Changeable Parameters ................................................83 6.4 Discussion .....................................................................................89 6.5 Conclusion .....................................................................................91 7 Multiple Rules‑Based Decision Making for Solving Data‑Centric Problems ..............................................................................................93 7.1 Variable-Consistency Dominance-Based Rough Set Approach .....94 7.2 Basic Notions of the Reference Point-Based MRDM Approach ....96 7.3 Core Attribute-Based MRDM Approach ....................................100 7.4 Hybrid Bipolar MRDM Approach ..............................................100 7.4.1 Dominance-Based Rough Set Approach ..........................101 7.4.2 Evaluations for an Aggregated Bipolar Decision Model ......104 7.5 Conclusion ...................................................................................105 SeCtion ii APPLiCAtionS oF MCDM 8 The Case of DEMATEL for Assessing Information Risk ..................109 8.1 Background of the Case and the Research Framework .................110 8.2 DEMATEL Analysis with INRM ................................................113 8.3 DANP Influential Weights for Criteria .........................................114 8.4 Discussion and Conclusion ...........................................................117 9 E‑Store Business Evaluation and Improvement Using a Hybrid MADM Model ...................................................................................119 9.1 Background of the Case and the Research Framework ................120 9.2 DANP for Finding Influential Weights .......................................122 Contents ◾ vii 9.3 Performance Measures and Modified VIKOR for Evaluations ....126 9.4 Discussion ...................................................................................126 9.5 Conclusion ...................................................................................132 10 Improving the Performance of Green Suppliers in the TFT‑LCD Industry .............................................................................................133 10.1 Background of the Case ...............................................................134 10.2 Research Framework and the Selected Criteria .............................135 10.3 DANP for Finding Influential Weights of Criteria ......................136 10.4 Modified PROMETHEE .............................................................137 10.5 Discussion ....................................................................................147 10.6 Conclusion ...................................................................................149 11 Exploring Smartphone Improvements Based on a Hybrid MADM Model 151 11.1 Background of the Case ................................................................152 11.2 Research Framework ...................................................................152 11.3 DEMATEL Analysis and DANP Influential Weights for Criteria .......................................................................................156 11.4 Modified VIKOR for Performance Gap Aggregation ...................161 11.5 Discussion on the Improvements of Smartphone Vendors ............165 11.6 Conclusion ...................................................................................166 12 Evaluating the Development of Business‑to‑Business M‑Commerce of SMEs ......................................................................169 12.1 Research Background ...................................................................169 12.2 Research Framework ....................................................................170 12.2.1 Technological Environment Aspect ..................................170 12.2.2 Organizational Environment Aspect ................................171 12.2.3 External Environment Aspect ..........................................171 12.3 DEMATEL Analysis and DANP Influential Weights for Criteria .......................................................................................172 12.4 Modified VIKOR for Performance Gap Aggregation ...................174 12.5 Discussion ....................................................................................177 12.6 Conclusion ...................................................................................181 13 Evaluation and Selection of Glamour Stocks by a Hybrid MADM Model ................................................................................................183 13.1 Research Background and Investment Strategy ............................184 13.2 Research Framework for the G-Score and Hybrid MADM Models ..........................................................................................184 13.3 DEMATEL Analysis and DANP Influential Weights of the G-Score Model .............................................................................186 viii ◾ Contents 13.4 Modified VIKOR for Performance Gap Aggregation and Evaluation ....................................................................................192 13.5 Discussion and Examination of Stock Returns .............................195 13.6 Conclusion ...................................................................................198 14 Nonadditive Hybrid MADM Model for Selecting and Improving Suppliers ............................................................................................201 14.1 Research Background and Literature Review ...............................202 14.1.1 Multiple Attribute Decision Making ...............................203 14.1.2 Mathematical Programming Models ..............................203 14.1.3 Combined and Integrated Hybrid Approaches ................203 14.3 Hybrid MADM Model Using Nonadditive-Type Aggregators.....204 14.3.1 Determining Gap Values Based on the New Concepts of Modified VIKOR Method ..........................................205 14.3.2 Applying λ Fuzzy Measures for Fuzzy Integrals ..............206 14.4 Numerical Example .....................................................................207 14.4.1 Measuring the Influential Relations and Weights by DEMATEL and DANP ..................................................208 14.4.2 Integrated Weighted Gaps Using the Fuzzy Integral Technique .......................................................................208 14.5 Discussion on Improving toward the Aspired Levels ....................216 14.6 Conclusion ...................................................................................217 15 New Perspectives on Modeling Strategic Alliances by De Novo Programming ....................................................................................219 15.1 I ntroduction to Strategic Alliances and Literature Review ............219 15.1.1 Transaction Cost Theory .................................................220 15.1.2 Resource-Dependent Theory ...........................................220 15.1.3 Strategic Behavior and Organizational Learning Perspectives ......................................................................221 15.2 Resource Allocation and De Novo Programming Perspectives .....221 15.3 Numerical Example .....................................................................224 15.4 Discussion ...................................................................................226 15.5 Conclusion ..................................................................................227 16 Automated Factory Planning Using the New Idea of Changeable Spaces ................................................................................................229 16.1 Background of the Case ...............................................................230 16.2 Research Framework and the Evolution of Optimization .............231 16.2.1 Conventional Pareto Solution .........................................232 16.2.2 De Novo Programming for Optimization .......................232 16.2.3 New Ideas of Changeable Spaces......................................233 16.3 Discussion ....................................................................................235 16.4 Conclusion ..................................................................................236 Contents ◾ ix 17 Fuzzy Inference‑Supported MRDM for Technical Analysis: A Case of Stock Investment ..................................................................239 17.1 B ackground of Technical Analysis and Computational Intelligence Techniques ...............................................................240 17.2 H ybrid Investment Support System Based on Fuzzy and Rough Set Techniques .................................................................242 17.3 Numerical Experiments ...............................................................244 17.3.1 Data Preprocessing ..........................................................244 17.3.2 Discretization of Fuzzy TA Signals by Fuzzy Inference Systems ............................................................................249 17.3.3 VC-DRSA Model ............................................................250 17.4 Simulated Investment Performance and Discussion ......................252 17.5 Conclusion ..................................................................................254 18 Financial Improvements of Commercial Banks Using a Hybrid MRDM Approach .............................................................................255 18.1 Research Background ...................................................................255 18.2 C ore Attributes–Based MRDM Approach for Financial Performance Improvement ...........................................................257 18.3 An Empirical Case of Five Commercial Banks .............................259 18.4 Analytical Results by the Modified VIKOR Method ..................264 18.5 Discussion ...................................................................................268 18.6 Conclusion ...................................................................................270 19 FCA‑Based DANP Model Using the Rough Set Approach: A Case Study of Semiconductor Companies .................................................273 19.1 Research Background ..................................................................273 19.2 R eviews of MCDM and Soft Computing Methods in Financial Applications ..................................................................275 19.3 Framework of the Hybrid MRDM Model ...................................278 19.4 Case Study of Semiconductor Companies ...................................280 19.5 FCA-Based DANP Model for Ranking Improvement Plans ........284 19.6 Discussion on Improvement Planning .........................................286 19.7 Conclusion ..................................................................................288 20 Hybrid Bipolar MRDM Model For Business Analytics ...................289 20.1 Background of Business Analytics ..............................................290 20.2 Hybrid MRDM Model Using the Bipolar Approach ....................291 20.3 A Case from the Semiconductor Industry ....................................298 20.3.1 Data ................................................................................298 20.3.2 Bipolar Weighting System ...............................................299 20.3.3 Aggregate Fuzzy Performance Evaluations Using Modified VIKOR ...........................................................302

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.