ebook img

New Aspects of Quantum Electrodynamics PDF

197 Pages·2017·7.479 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Aspects of Quantum Electrodynamics

Akitomo Tachibana New Aspects of Quantum Electrodynamics New Aspects of Quantum Electrodynamics Akitomo Tachibana New Aspects of Quantum Electrodynamics AkitomoTachibana DepartmentofMicroEngineering KyotoUniversity Kyoto,Japan ISBN978-981-10-3131-1 ISBN978-981-10-3132-8 (eBook) DOI10.1007/978-981-10-3132-8 LibraryofCongressControlNumber:2016960671 ©SpringerNatureSingaporePteLtd.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Quantum Mechanics: 100 Years of Mystery Solved! In the theoretical study of the application of quantum electrodynamics (QED), recent progress in research has led to solving the mystery (as Feynman said) involved in the foundation of quantum mechanics. Because this is a very big achievement, we will first note this breakthrough in the title of this preface, and laterdemonstratetheindividualresearchoutcomes. QED is a relativistic quantum field theory, a quantum theory of photons with electrons, and is considered the most successful accurate theory we have, e.g., to explaintheLambshift,theanomalousmagneticmomentoftheelectrons,andsoon usingtheFeynmandiagramtechniqueofthecovariantperturbationapproach.We willelaboratethenon-perturbationapproachinthisbook. ThisbookpresentsnewaspectsofQEDfrombasicphysicstophysicalchemistry withmathematicalrigor.Topicscoveredincludespindynamics,chemicalreactiv- ity,thedualCauchyproblem,andmore.Readersinterestedinmodernapplications of quantum field theory in nano-, bio-, and open systems will enjoy learning how theup-to-datequantumtheoryofradiationwithmatterworksintheworldofQED. In particular, chemical ideas restricted now to nonrelativistic quantum theory are showntobeunifiedandextendedtorelativisticquantumfieldtheorythatisbasicto particlephysicsandcosmology:realizationofthenew-generationquantumtheory. Readersareassumedtohaveabackgroundequivalenttoanundergraduatestudent’s elementary knowledge in electromagnetism, quantum mechanics, chemistry, and mathematics. This book makes use of abundant figures to help the reader grasp ideasquickly,includesmanyequationstohelpthereadertofollowthelogicstep- by-step, and provides an ample range of examples and references to facilitate in-depthlearning. I would like to thank Drs. Koichi Nakamura, Kentaro Doi, Masato Senami, Kazuhide Ichikawa, Ludwik Komorowski, Piotr Ordon, Andrzej Sokalski, Paweł Szarek, Irene Yarovsky, David Henry, Hansong Cheng, Akinori Fukushima, Yuji v vi Preface Ikeda,HirooNozaki,MasahiroFukuda,andmembersoftheTachibanaLaboratory in Kyoto University for their collaboration and producing some of the figures of numericalcalculations. Kyoto,Japan AkitomoTachibana 31August2016 Contents 1 BasicPhysicsofQED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 QEDandQuantumMechanics. . . . . . . . . . . . . . . . . . . . . 1 1.1.2 TheMostBeautifulScientificExperiment. . . . . . . . . . . . . 3 1.1.3 MysteryofQuantumMechanics. . . . . . . . . . . . . . . . . . . . 4 1.1.4 NewTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.5 SurveyofThisBook. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.6 QuickReviewoftheStandardTheoryofQED. . . . . . . . . 8 1.1.7 New-GenerationQuantumTheory. . . . . . . . . . . . . . . . . . 9 1.1.8 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 RiggedQEDTheory. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 19 1.2.1 UnderlyingHistoryoftheRiggedQEDTheory. . . . . . . . . 19 1.2.2 BasicPhysicsoftheRiggedQEDTheory. . . . . . . . . . . . . 22 1.2.3 TheMaxwellEquations. . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.4 TheDirac–Schr€odingerEquations. . . . . . . . . . . . . . . . . . 25 1.2.5 ContinuityEquations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.6 TheLorentzForceandStressTensors. . . . . . . . . . . . . . . 28 1.2.7 SpinTorqueofElectron. . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.8 SpinVorticityofElectron. . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.9 AngularMomentumofQED. . . . . . . . . . . . . . . . . . . . . . 34 1.3 PhenomenologyoftheRiggedQEDTheory. . . . . . . . . . . . . . . . 36 1.3.1 EnergyDensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3.2 ElectromagneticEnergyDensity inMagnetodielectricMedia. . . . . . . . . . . . . . . . . . . . . . . 39 1.3.3 EffectiveChargeNumberofElectromigration. . . . . . . . .. 45 1.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.4.1 TorqueinAnalyticalExamples. . . . . . . . . . . . . . . . . . . . 47 1.4.2 TorqueinMolecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 vii viii Contents 1.4.3 ElectromagneticPropertiesofMatter inMagnetodielectricMedia. . . . . . . . . . . . . . . . . . . . . . . 58 1.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2 Energy-MomentumTensorofQED. . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1 Energy-MomentumTensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.1 PrincipleofEquivalence. . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.2 TheMinkowskiSpace-Time. . . . . . . . . . . . . . . . . . . . . . 75 2.2 RiggedFieldTheory. . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . 79 2.2.1 RiggedQEDTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.2.2 PrimaryRiggedQEDTheory. . . . . . . . . . . . . . . . . . . . . . 81 2.3 SUGRAEnergy-MomentumTensor. . . . . . . . . . . . . . . . . . . . . . 82 2.3.1 StressTensor.. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. 82 2.3.2 Energy-MomentumTensor. . . . . . . . . . . . . . . . . . . . . . . 83 2.3.3 SUGRAFormalism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.4.1 RiggedQEDTheoryintheCurvedSpace-Time. . . . . . . . 90 2.4.2 TheMajoranaParticle. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.4.3 TheAtiyah–SingerIndexTheorem. . . . . . . . . . . . . . . . . . 92 2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3 ChemicalIdeasofQED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.1 PrimaryRiggedQEDTheory. . . . . . . . . . . . . . . . . . . . . . 97 3.1.2 ShapeVolumeofShellStructureandtheIntrinsic ElectronicTransitionState. . . . . . . . . . . . . . . . . . . . . . . . 99 3.2 StressTensorandtheSpindleStructure. . . . . . . . . . . . . . . . . . . . 102 3.3 StressastheEnergyDensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3.1 LiquidCharacter:StandingWaveMode ofTensionlessElectron. . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3.2 LiquidCharacter:PropagatingWaveMode ofTensionlessElectron. . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.3.3 MixedCharacter:TheBlochWaveModeofTension FiniteElectron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.3.4 SpindleStructureAlongtheReactionCoordinate. . . . . . . 113 3.3.5 TheGenericLewisPairFormationandtheNonclassical BondOrder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.4 RegionalChemicalPotential. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.5 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.5.1 ChemicalBond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.5.2 NonclassicalBondOrderandRegional ChemicalPotential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Contents ix 4 Alpha-OscillatorTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.1 CanonicalQuantization. . .. . . . .. . . . .. . . .. . . . .. . . . .. . . .. 143 4.1.1 QEDHamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.1.2 ConventionalConservativeQEDHamiltonian. . . . . . . . . . 145 4.2 Alpha-OscillatorTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2.1 Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2.2 CausalityandInitialCondition. . . . . . . . . . . . . . . . . . . . . 147 4.2.3 ElectromagneticField. . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.2.4 Alpha-OscillatorAlgebra. . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3 Double-SlitSpace-Time-ResolvedPredictionofQED. . . . . . . . . 157 4.3.1 TheFeynmanMystery. . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.3.2 TheDualCauchyProblem. . . . . . . . . . . . . . . . . . . . . . . . 158 4.4 NormalMode. .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . 168 4.4.1 ParticlePicture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.4.2 ElectromagneticFieldRenormalization. . . . . . . . . . . . . . 168 4.4.3 TheDiracFieldRenormalization. . . . . . . . . . . . . . . . . . . 170 4.4.4 RenormalizedKetVectorandWaveFunction. . . . . . . . . . 172 4.4.5 FormalSolutionsofbzαðeωÞðtÞ. . . . . . . . . . . . . . . . . . . . . . 174 4.5 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Chapter 1 Basic Physics of QED Abstract Basic physics of quantum electrodynamics (QED) is reviewed in com- parisonwithquantummechanics.Underexternalsourceofelectromagneticfields, charged particles can be accelerated by the Lorentz force. The Lorentz force is compensatedbytensionatanypointoftheMinkowskispace-time. Thetensionis given by the divergence of internal self-stress tensor. The antisymmetric compo- nent ofthe stress tensor leads tospintorque anddrives timeevolutionofelectron spin. This is called the quantum electron spin vorticity principle. The spin torque canbecompensatedbyaforcecalledzetaforce. Keywords Alpha-oscillator theory • Chirality • Double slit • Dual Cauchy problem • Electromigration • Helicity • Measurement • Primary Rigged QED theory • Principle of equivalence • Response • Rigged QED theory • Spin torque • Spin vorticity • Spindle structure • Stress tensor • Tension • Zeta force • Zetapotential 1.1 Introduction 1.1.1 QED and Quantum Mechanics In the Einstein special theory of relativity, a measurement of an “event” α is discussed on the Minkowski space-time. Let an event α be characterized in rela- b tivistic quantum field theory by a field operator Fðct,x,y,zÞ at the Minkowski space-timecoordinates(ct,x,y,z)asshowninFig.1.1.Thisisthestandardframe- work of QED. In quantum mechanics, however, more operators bx,by, and bz with Fbðct,bx,by,bzÞarerequiredtodiscussthemeasurementproblem. This additional expectation value problem of bx,by, and bz with Fbðct,bx,by,bzÞ in quantummechanicsmaybeviewedas“theicingonthecake”fromthatinQED.In QED,theCartesiancoordinatesx,y,andzaremerelythescaleininchesorcmfor b Fðct,x,y,zÞ and are not the objects of observation. In QED, the Cartesian coordi- natesx,y,andzarenotobservablesnorcanonicalvariablesnoroperators.Sothatin QED, we have no problem with the collapse of wave function nor classical ©SpringerNatureSingaporePteLtd.2017 1 A.Tachibana,NewAspectsofQuantumElectrodynamics, DOI10.1007/978-981-10-3132-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.