New AMPL Interfaces for Enhanced Optimization Model Development and Deployment Robert Fourer AMPL Optimization Inc. www.ampl.com — +1 773-336-AMPL INFORMS Conference on Business Analytics & Operations Research Boston, 30 March – 1 April 2014 Track 11, Monday 1:50-2:40, Software Tutorials Robert Fourer, New AMPL Interfaces for Development & Deployment 1 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Outline Deploying models Scripting Internal modeling/programming language AMPL API (Application Programming Interfaces) External programming language support General-purplse languages: C++, Java, .NET, Python Analytics languages: MATLAB, R Developing models More natural formulations Logical conditions Quadratic constraints AMPL IDE (Integrated Development Environment) Unified editor & command processor Built on the Eclipse platform Robert Fourer, New AMPL Interfaces for Development & Deployment 3 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Introductory Example Multicommodity transportation . . . Products available at factories Products needed at stores Plan shipments at lowest cost . . . with practical restrictions Cost has fixed and variable parts Shipments cannot be too small Factories cannot serve too many stores Robert Fourer, New AMPL Interfaces for Development & Deployment 4 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Given (cid:1841) Set of origins (factories) (cid:1830) Set of destinations (stores) (cid:1842) Set of products and (cid:1853) Amount available, for each (cid:1861) ∈ (cid:1841) and (cid:1868) ∈ (cid:1842) (cid:3036)(cid:3043) (cid:1854) Amount required, for each (cid:1862) ∈ (cid:1830) and (cid:1868) ∈ (cid:1842) (cid:3037)(cid:3043) (cid:1864) Limit on total shipments, for each (cid:1861) ∈ (cid:1841) and (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1855) Shipping cost per unit, for each (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:1861)(cid:1862)(cid:1868) (cid:1856) Fixed cost for shipping any amount from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1871) Minimum total size of any shipment (cid:1866) Maximum number of destinations served by any origin Robert Fourer, New AMPL Interfaces for Development & Deployment 5 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Determine (cid:1850) Amount of each (cid:1868) ∈ (cid:1842) to be shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862)(cid:1868) (cid:1851) 1 if any product is shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) 0 otherwise to minimize ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Total variable cost plus total fixed cost Robert Fourer, New AMPL Interfaces for Development & Deployment 6 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1853) for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Total shipments of product (cid:1868) out of origin (cid:1861) must not exceed availability ∑ (cid:1850) (cid:3404) (cid:1854) for all (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:3036)∈(cid:3016) (cid:3036)(cid:3037)(cid:3043) (cid:3037)(cid:3043) Total shipments of product (cid:1868) into destination (cid:1862) must satisfy requirements Robert Fourer, New AMPL Interfaces for Development & Deployment 7 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1864) (cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total may not exceed the limit, and (cid:1851) must be 1 (cid:3036)(cid:3037) ∑ (cid:1850) (cid:3410) (cid:1871)(cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total amount of shipments must be at least (cid:1871) ∑ (cid:1851) (cid:3409) (cid:1866) for all (cid:1861) ∈ (cid:1841) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) Number of destinations served by origin (cid:1861) must be as most (cid:1866) Robert Fourer, New AMPL Interfaces for Development & Deployment 8 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic data set ORIG; # origins set DEST; # destinations set PROD; # products param supply {ORIG,PROD} >= 0; # availabilities at origins param demand {DEST,PROD} >= 0; # requirements at destinations param limit {ORIG,DEST} >= 0; # capacities of links param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost param fcost {ORIG,DEST} > 0; # fixed usage cost param minload >= 0; # minimum shipment size param maxserve integer > 0; # maximum destinations served Robert Fourer, New AMPL Interfaces for Development & Deployment 9 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic model: variables and objective var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped var Use {ORIG, DEST} binary; # 1 if link used, 0 otherwise minimize Total_Cost: sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p] + sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j]; ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Robert Fourer, New AMPL Interfaces for Development & Deployment 10 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic model: constraint subject to Supply {i in ORIG, p in PROD}: sum {j in DEST} Trans[i,j,p] <= supply[i,p]; ∑ (cid:1850) (cid:3409) (cid:1853) , for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Robert Fourer, New AMPL Interfaces for Development & Deployment 11 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials
Description: