Neutrosophic Sets and Systems, Vol. 19, 2018 24 University of New Mexico Neutrosophic EOQ Model with Price Break M. Mullai1 Assistant Professor of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India. E-mail: mullaimalagappauniversity.ac.in R. Surya2 Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India. E-mail: [email protected] Abstract—Inventorycontrolofanidealresourceisthemostimportantonewhichfulfilsvariousactivities(functions)of anorganisation.Thesuppliergivesthediscountforaniteminthecostofunitsinordertomotivatethebuyers(or) customerstopurchasethelargequantityofthatitem.Thesediscountstaketheformofpricebreakswherepurchase costisassumedtobeconstant.InthispaperanEOQmodelwithpricebreakininventorymodelisdevelopedtoobtain itsoptimumsolutionbyassumingneutrosophicdemandandneutrosophicpurchasingcostastriangularneutrosophic numbers.Anumericalexampleisprovidedtoillustratetheproposedmodel. Keywords: Price break, neutrosophic demand, neutrosophic purchase cost, neutrosophic sets, triangular neutrosophic number. 1 INTRODUCTION by M. Mullai and S. Broumi[3]. In this paper, we introduce the neutro- Bai and Li[1] have discussed triangular and sophic inventory models with neutrosophic trapezoidal fuzzy numbers in inventory model price break to find the optimal solution of the for determining the optimal order quantity and model for the optimal order quantity. Also the the optimal cost. The quantity discount prob- neutrosophic inventory model under neutro- lem has been analyzed from a buyers perspec- sophic demand and neutrosophic purchasing tive. Hadley and Whintin[2], Peterson and Sil- cost at which the quantity discount are offered ver[3], and Starr and Miller[6] considered vari- to be triangular neutrosophic number. Also the ous discount polices and demand assumptions. optimal order quantity for the neutrosophic to- Yang and Wee[7] developed an economic tal cost is determined by defining the accuracy ordering policy in the view of both the sup- function of triangular neutrosophic numbers. plier and the buyer. Prabjot Kaur and Mahuya Deb[5]developedanintuitionisticapproachfor 2 NOTATIONS: price breaks in EOQ from buyer’s perspec- tive. Smarandache[5] introduced neutrosophic QN = Number of pieces per order set and neutrosophic logic by considering the non-standard analysis. Also, neutrosophic in- CN = Neutrosophic Ordering cost for each 0 ventory model without shortages is introduced order M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break Neutrosophic Sets and Systems, Vol. 19, 2018 25 QNP3NIN)(D(cid:48)NP(cid:48)N + D1(cid:48)NC0N + QNP1(cid:48)NIN,DNPN + 2 1 1 QN 2 2 2 CNh = Neutrosophic Holding cost per unit D2NC0N + QNP2NIN,D(cid:48)NP(cid:48)N + D3(cid:48)NC0N + QN 2 3 3 QN per year QNP3(cid:48)NIN)(D(cid:48)(cid:48)NP(cid:48)(cid:48)N+D1(cid:48)(cid:48)NC0N +QNP1(cid:48)(cid:48)NIN,DNPN+ 2 1 1 QN 2 2 2 DN = Neutrosophic Annual demand in D2NC0N + QNP2NIN,D(cid:48)(cid:48)NP(cid:48)(cid:48)N + D3(cid:48)(cid:48)NC0N + QNP3(cid:48)(cid:48)NIN) QN 2 3 3 QN 2 units The defuzzified total neutrosophic cost using accuracy function is given by 3 NEUTROSOPHIC EOQ MODEL WITH PRICE BREAK: D(TC)N = 18[(D1NP1N + D1QNNC0N + QNP21NIN) + 2(DNPN +D2NC0N +QNP2NIN)+(DNPN +D3NC0N + The Neutrosophic inventory model with 2 2 QN 2 3 3 QN neutrosophic price break is introduced to QNP3NIN) + (D(cid:48)(cid:48)NP(cid:48)(cid:48)N + D1(cid:48)(cid:48)NC0N + QNP1(cid:48)(cid:48)NIN) + 2 1 1 QN 2 find the optimal solutions for the optimal 2(DNPN + D2NC0N + QNP2NIN) + (D(cid:48)(cid:48)NP(cid:48)(cid:48)N + 2 2 QN 2 3 3 neutrosophic order quantity. Here we D(cid:48)(cid:48)NCN QNP(cid:48)(cid:48)NIN 3 0 + 3 )] assume that there is no stock outs, no QN 2 backlogs, replenishment is instantaneous, To find the minimum of D(TC)N by taking the neutrosophic ordering cost involved to the derivative D(TC)N and equating it to zero, receive an order are known and constant and purchasing values at which discounts are (i.e) 1 [(DNCN + 2DNCN + DNCN) + offered as triangular neutrosophic numbers. 8Q2N 1 0 2 0 3 0 (D(cid:48)(cid:48)NCN + 2DNCN + D(cid:48)(cid:48)NCN)] + 1 [(PNIN + Consider the following variables: 1 0 2 0 3 0 16 1 DN: Neutrosophic yearly demand, 2P2NIN+P3NIN)+(P1(cid:48)(cid:48)NIN+2P2NIN+P3(cid:48)(cid:48)NIN)] = 0, we get (cid:114) PN: Neutrosophic purchasing cost QN = 2[(D1NC0N+2D2NC0N+D3NC0N)+(D1(cid:48)(cid:48)NC0N+2D2NC0N+D3(cid:48)(cid:48)NC0N)] [(PNIN+2PNIN+PNIN)+(P(cid:48)(cid:48)NIN+2PNIN+P(cid:48)(cid:48)NIN)] 1 2 3 1 2 3 Neutrosophic Price Break: LetDN =(DN,DN,DN)(D(cid:48)N,DN,D(cid:48)N)(D(cid:48)(cid:48)N,DN,D(cid:48)(cid:48)N) 1 2 3 1 2 3 1 2 3 S.No. Quantity Price Per Unit (Rs) PN = (P1N,P2N,P3N) (P1(cid:48)N,P2N,P3(cid:48)N) (P1(cid:48)(cid:48)N,P2N,P3(cid:48)(cid:48)N) 1 0≤ QN1 ≤ b P1N 2 b ≤ QN PN(< PN) 2 2 1 PN = (PN,PN,PN) (P(cid:48)N,PN,P(cid:48)N) (P(cid:48)(cid:48)N,PN,P(cid:48)(cid:48)N) 1 11 12 13 11 12 13 11 12 13 4 ALGORITHM FOR FINDING NEUTRO- PN = (PN,PN,PN) (P(cid:48)N,PN,P(cid:48)N) (P(cid:48)(cid:48)N,PN,P(cid:48)(cid:48)N) 2 21 22 23 21 22 23 21 22 23 SOPHIC OPTIMAL QUANTITY AND NEU- TROSOPHIC OPTIMAL COST: are non negative triangular neutrosophic numbers. Step I: Consider the lowest price PN and determine 2 Now, we introduce the neutrosophic QN by using the economic order quantity 2 inventory model under neutrosophic demand (EOQ) formula: (cid:114) and neutrosophic purchasing cost at which QN = 2[(D1NC0N+2D2NC0N+D3NC0N)+(D1(cid:48)(cid:48)NC0N+2D2NC0N+D3(cid:48)(cid:48)NC0N)] [(PNIN+2PNIN+PNIN)+(P(cid:48)(cid:48)NIN+2PNIN+P(cid:48)(cid:48)NIN)] the quantity discounts are offered. Total 1 2 3 1 2 3 neutrosophic inventory cost is given by IfQN liesintherangespecified,b ≥ QN then 2 2 QN is the EOQ .The defuzzified optimal total (TC)N = DN ⊗PN ⊕ DQNNC0N ⊕ QNPN2⊗IN co2st (TC)N associated with QN is calculated as follows: Thenthetotalneutrosophicinventorycostis (TC)N = DN ∗PN + DNC0N + bP2N∗IN, (TC)N = (D1NP1N + D1QNNC0N + QNP21NIN,D2NP2N + by using th2e abccuracy 2 function D2NC0N + QNP2NIN,DNPN + D3NC0N + AN = (a1+2a2+a3)+(a(cid:48)1(cid:48)+2a2+a(cid:48)3(cid:48)) QN 2 3 3 QN 8 M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break 26 Neutrosophic Sets and Systems, Vol. 19, 2018 Step 2: TC(P1 = 800) = Rs.296039 TC(b=100) = Rs.224250, which is lower (i) If QN < b, we cannot place an order at 2 than the total cost corresponding to Q 2 the lowest price PN. 2 (ii) We calculate QN with price PN and the (ii) Fuzzy Case: 1 1 corresponding total cost TC at QN. (iii) If (TC)Nb > (TC)NQN, then EOQ is Given D(cid:101) = (300, 350, 400), P(cid:101)1 = (750, 800, 1 850) Q∗N = QN, Otherwise Q∗N = b is the required 1 EOQ. P(cid:101) = (550, 600, 650),C = Rs.1500,I = 0.3 2 0 The EOQ in crisp, fuzzy and intuitionistic Q(cid:101)∗2 = 88.192 fuzzy sets are discussed detail in [5]. They are T(cid:103)C(P = 800) = Rs.297785.95 1 (i) Crisp: (cid:113) Q∗ = 2DC0 T(cid:103)C(b=100) = Rs.225500, which is lower 2 P2I than the total cost corresponding to Q . 2 (ii) Fuzzy: (cid:113) (iii) Intuitionistic Fuzzy Case: Q(cid:101)∗ = 2(D1C0+2D2C0+D3C0) 2 P1I+2P2I+P3I Given D = (300, 350, 400) (250, 350, 450) (iii) Intuitionistic fuzzy: Q∗ = (cid:113)2(D1C0+4D2C0+D3C0+D1(cid:48)C0+D3(cid:48)C0) P1 = (750, 800, 850) (700, 800, 900) 2 P1I+4P2I+P3I+P1(cid:48)I+P3(cid:48)I P = (550, 600, 650) (500, 600, 700), 2 Using these formula, the numerical example C = Rs.1500, I = 0.3 0 for neutrosophic set is illustrated as follows. ∗ Q = 88.19 2 TC(P = 800) = Rs.299660.85 1 5 NUMERICAL EXAMPLE: TC(b = 100) = Rs.227375, which is lower A manufacturing company issues the supply of than the total cost corresponding to Q . 2 a special component which has the following price schedule: (iv) Neutrosophic Case: 0 to 99 items: Rs.800 per unit Given DN = (300, 350, 400) (250, 350, 450) (150, 350, 550) 100 items and above: Rs.600 per unit PN = (750, 800, 850) (700, 800, 900)(600, 1 The inventory holding costs are estimated 800, 1000) to be Rs.30/- of the value of the inventory. The procurement ordering costs are estimated to be PN = (550, 600, 650) (500, 600, 700)(400, 2 Rs.1500 per order. If the annual requirement of 600, 800) the special component is 350, then compute the economic order quantity for the procurement CN = Rs.1500, IN = 0.3 0 of these items. We calculate Q∗N corresponding to the lowest 2 Solution: price 600, (cid:114) Q∗N = 2[(D1NC0N+2D2NC0N+D3NC0N)+(D1(cid:48)(cid:48)NC0N+2D2NC0N+D3(cid:48)(cid:48)NC0N)] (i) Crisp Case: 2 [(PNIN+2PNIN+PNIN)+(P(cid:48)(cid:48)NIN+2PNIN+P(cid:48)(cid:48)NIN)] 1 2 3 1 2 3 =76.376,which is less than the price break point. Given D = 350, P = Rs.800, P = Rs.600, Therefore,wehavetodeterminetheoptimal 1 2 C = Rs.1500, I = 0.3 total cost for the first price and the total cost 0 at the price- break corresponding to the second Q∗ = 76 price and compare the two. 2 M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break Neutrosophic Sets and Systems, Vol. 19, 2018 27 The defuzzified optimal total cost (TC)N asso- 3.5x 105 ciated with PN is calculated as follows: 1 S.No. 1 3 SS..NNoo.. 23 (TC)N(PN =800) = DN ∗PN + DNC0N + QN2 P1N ∗IN 2.5 324354.86 331337.2 SS..NNoo.. 45 1 1 QN 2 2 = Rs.306664.13 2 316127.02 323115.96 1.5 299660.85 306664.13 DNCN bPN ∗IN (TC)N(b=100) = DN ∗PN + 0 + 2 1 283181.28 290198.96 2 b 2 = Rs.173812.5 0.5 274936.56 281961.24 which is lower than the total cost 0 Intuitionistic (TC)(p1) Neutrosophic (TC)N(p1) corresponding to QN. 2 Figure 2. Analysis of first price between intuitionistic fuzzy set andneutrosophicset 6 SENSITIVITY ANALYSIS 2.5x 105 In this section, the analysis between intuitionis- S.No. 1 S.No. 2 ticset and neutrosophic setistabulated andthe 2 S.No. 3 S.No. 4 S.No. 5 results are compared graphically. 245825 187650 1.5 239675 183037.5 1 227375 173812.5 S.No. IntuitionisticDemand NeutrosophicDemand 1 (270,320,370)(220,320,420) (270,320,370)(220,320,420)(120,320,520) 215075 164587.5 2 (280,330,380)(230,330,430) (280,330,380)(230,330,430)(130,330,530) 0.5 3 (300,350,400)(250,350,450) (300,350,400)(250,350,450)(150,350,550) 208925 159975 4 (320,370,420)(270,370,470) (320,370,420)(270,370,470)(170,370,570) 5 (330,380,430)(280,380,480) (330,380,430)(280,380,480)(180,380,580) 0 Intuitionistic (TC)(b) Neutrosophic(TC)N(b) Figure3.Analysisofpricebreakcorrespondingtosecondprice betweenintuitionisticfuzzysetandneutrosophicset 100 90 S.No. 1 S.No. 2 80 SS..NNoo.. 34 S.No. 5 70 Conclusion 91.89 79.58 60 In this paper, EOQ model with price break 50 90.68 78.53 in neutrosophic environment is introduced. An 40 88.19 76.38 inventory model is developed for price breaks 30 20 85.63 74.16 and its optimum solution is obtained by using 10 84.33 73.03 triangular neutrosophic number. An algorithm 0 Intuitionistic (Q) Neutrosophic (Q)N for solving neutrosophic optimal quantity and neutrosophic optimal cost is also developed. Figure 1. Analysis of economic order quantity (EOQ) between Thiswillbeanadvantageforthebuyerwhocan intuitionisticfuzzysetandneutrosophicset easily decrease the bad cases and increase the better ones. Hence, the neutrosophic set gives the better solutions to the real world problems than fuzzy and intuitionistic fuzzy sets. In fu- ture, the various neutrosophic inventory mod- els will be developed with various limitations such as lead time, backlogging, back order and deteriorating items, etc. M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break 28 Neutrosophic Sets and Systems, Vol. 19, 2018 [9] Abdel-Basset, M., Mohamed, M., Smarandache, F., & Chang, V. (2018). Neutrosophic Association Rule REFERENCES Mining Algorithm for Big Data Analysis. Symmetry, 10(4), 106. [1] S.BAIANDY.LI,Studyofinventorymanagementbasedontri- angular fuzzy numbers theory, IEEE, 978-1-4244-2013-1/08/ [10] Abdel-Basset, M., & Mohamed, M. (2018). The Role of 2008. Single Valued Neutrosophic Sets and Rough Sets in [2] G. HADLEY AND T. M. WHITIN,Analysis of Inventory Sys- Smart City: Imperfect and Incomplete Information tems,PrenticeHall,Inc,EnglewoodCliffs,N.J1963. Systems. Measurement. Volume 124, August 2018, [3] M. MULLAI AND S. BROUMI,Neutrosophic Inventory Model Pages 47-55 withoutShortages,AsianJournalofMathematicsandCom- puterResearch,23(4):214-219,2018.. [11] Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & [4] R.PETERSONANDE.A.SILVER,DecisionsSystemsforInven- Smarandache, F. A novel method for solving the fully tory Management and Production Planning, John Wiley and neutrosophic linear programming problems. Neural Sons,NewYork1979. Computing and Applications, 1-11. [5] PRABJOT KAUR AND MAHUYA DEB,An Intuitionistic Ap- proach for Price Breaks in EOQ from Buyer’s Perspective, Ap- [12] Abdel-Basset, M., Manogaran, G., Gamal, A., & pliedMathematicalSciences,Vol.9,2015,no.71,3511-3523 Smarandache, F. (2018). A hybrid approach of [6] F. SMARANDACHE, Neutrosophic set - a generalization of the neutrosophic sets and DEMATEL method for intuitionisticfuzzyset,GranularComputing,2006IEEEInter- nationalConference,2006,pp.38–42. developing supplier selection criteria. Design [7] K. M. STARR AND D. W. MILLER,Inventory Control: Theory Automation for Embedded Systems, 1-22. andPractice,PrenticeHall,Inc,EnglewoodCliffs,N.J1962. [8] YANG, P., AND WEE, H.,Economic ordering policy of de- [13] Abdel-Basset, M., Mohamed, M., & Chang, V. (2018). teriorated item for vendor and buyer: an integrated ap- NMCDA: A framework for evaluating cloud computing proach.ProductionPlanningandControl,11,2000,474–480 services. Future Generation Computer Systems, 86, 12-29. Received : January 17, 2018. Accepted : March 5, 2018. M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break