ebook img

Neutrosophic Association Rule Mining Algorithm for Big Data Analysis PDF

2018·9.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrosophic Association Rule Mining Algorithm for Big Data Analysis

SS symmetry Article Neutrosophic Association Rule Mining Algorithm for Big Data Analysis MohamedAbdel-Basset1,* ID,MaiMohamed1,FlorentinSmarandache2,* ID andVictorChang3 1 DepartmentofOperationsResearch,FacultyofComputersandInformatics,ZagazigUniversity, Sharqiyah44519,Egypt;[email protected] 2 Math&ScienceDepartment,UniversityofNewMexico,Gallup,NM87301,USA 3 InternationalBusinessSchoolSuzhou,Xi’anJiaotong-LiverpoolUniversity,Wuzhong, Suzhou215123,China;[email protected] * Correspondence:[email protected](M.A.-B.);[email protected](F.S.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:5March2018;Accepted:9April2018;Published:11April2018 Abstract: BigDataisalarge-sizedandcomplexdataset,whichcannotbemanagedusingtraditional dataprocessingtools. Miningprocessofbigdataistheabilitytoextractvaluableinformationfrom theselargedatasets. Associationruleminingisatypeofdataminingprocess,whichisindentedto determineinterestingassociationsbetweenitemsandtoestablishasetofassociationruleswhose supportisgreaterthanaspecificthreshold. Theclassicalassociationrulescanonlybeextractedfrom binarydatawhereanitemexistsinatransaction, butitfailstodealeffectivelywithquantitative attributes, through decreasing the quality of generated association rules due to sharp boundary problems. Inordertoovercomethedrawbacksofclassicalassociationrulemining,weproposein thisresearchanewneutrosophicassociationrulealgorithm. Thealgorithmusesanewapproach forgeneratingassociationrulesbydealingwithmembership,indeterminacy,andnon-membership functions of items, conducting to an efficient decision-making system by considering all vague association rules. To prove the validity of the method, we compare the fuzzy mining and the neutrosophicmining.Theresultsshowthattheproposedapproachincreasesthenumberofgenerated associationrules. Keywords: neutrosophicassociationrule;datamining;neutrosophicsets;bigdata 1. Introduction Theterm‘BigData’originatedfromthemassiveamountofdataproducedeveryday. Eachday, Googlereceivescca. 1billionqueries,Facebookregistersmorethan800millionupdates,andYouTube countsupto4billionviews, andtheproduceddatagrowswith40%everyyear. Othersourcesof dataaremobiledevicesandbigcompanies. Theproduceddatamaybestructured,semi-structured, orunstructured. Mostofthebigdatatypesareunstructured;only20%ofdataconsistsinstructured data. Therearefourdimensionsofbigdata: (1) Volume: bigdataismeasuredbypetabytesandzettabytes. (2) Velocity: theacceleratingspeedofdataflow. (3) Variety: thevarioussourcesandtypesofdatarequiringanalysisandmanagement. (4) Veracity: noise,abnormality,andbiasesofgeneratedknowledge. Consequently,Gartner[1]outlinesthatbigdata’slargevolumerequirescost-effective,innovative formsforprocessinginformation,toenhanceinsightsanddecision-makingprocesses. Prominentdomainsamongapplicationsofbigdataare[2,3]: Symmetry2018,10,106;doi:10.3390/sym10040106 www.mdpi.com/journal/symmetry Symmetry2018,10,106 2of19 (1) Businessdomain. (2) Technologydomain. (3) Healthdomain. (4) Smartcitiesdesigning. These various applications help people to obtain better services, experiences, or be healthier, bydetectingillnesssymptomsmuchearlierthanbefore[2]. Somesignificantchallengesofmanaging andanalyzingbigdataare[4,5]: (1) AnalyticsArchitecture: Theoptimalarchitecturefordealingwithhistoricandreal-timedataat thesametimeisnotobviousyet. (2) Statisticalsignificance: Fulfillstatisticalresults,whichshouldnotberandom. (3) Distributedmining: Variousdataminingmethodsarenotfiddlingtoparalyze. (4) Timeevolvingdata: Datashouldbeimprovedovertimeaccordingtothefieldofinterest. (5) Compression: Todealwithbigdata,theamountofspacethatisneededtostoreishighlyrelevant. (6) Visualization: Themainmissionofbigdataanalysisisthevisualizationofresults. (7) Hiddenbigdata:Largeamountsofbeneficialdataarelostsincemoderndataisunstructureddata. Duetotheincreasingvolumeofdataatamatchlessrateandofvariousforms,weneedtomanage andanalyzeuncertaintyofvarioustypesofdata. Bigdataanalyticsisasignificantfunctionofbigdata, whichdiscoversunobservedpatternsandrelationshipsamongvariousitemsandpeopleinterestona specificitemfromthehugedataset. Variousmethodsareappliedtoobtainvalid,unknown,anduseful models from large data. Association rule mining stands among big data analytics functionalities. The concept of association rule (AR) mining already returns to H’ajek et al. [6]. Each association rule in database is composed from two different sets of items, which are called antecedent and consequent. A simple example of association rule mining is “if the client buys a fruit, he/she is 80% likely to purchase milk also”. The previous association rule can help in making a marketing strategyofagrocerystore. Then, wecansaythatassociationrule-miningfindsallofthefrequent itemsindatabasewiththeleastcomplexities. Fromalloftheavailablerules,inordertodeterminethe rulesofinterest,asetofconstraintsmustbedetermined. Theseconstraintsaresupport,confidence, lift, and conviction. Support indicates the number of occurrences of an item in all transactions, while the confidence constraint indicates the truth of the existing rule in transactions. The factor “lift”explainsthedependencyrelationshipbetweentheantecedentandconsequent. Ontheother hand, the conviction of a rule indicates the frequency ratio of an occurring antecedent without a consequentoccurrence. Associationrulesminingcouldbelimitedtotheproblemoffindinglarge itemsets,wherealargeitemsetisacollectionofitemsexistinginadatabasetransactionsequaltoor greaterthanthesupportthreshold[7–20]. In[8],theauthorprovidesasurveyoftheitemsetmethods fordiscoveringassociationrules. Theassociationrulesarepositiveandnegativerules. Thepositive association rules take the form X →Y, X ⊆ I, Y ⊆ I and X∩Y = ϕ, where X,Y are antecedent andconsequentand I isasetofitemsindatabase. Eachpositiveassociationrulemayleadtothree negativeassociationrules, →Y, X →Y, and X →Y. Generatingassociationrulesin[9]consists oftwoproblems. Thefirstproblemistofindfrequentitemsetswhosesupportsatisfiesapredefined minimum value. Then, the concern is to derive all of the rules exceeding a minimum confidence, basedoneachfrequentitemset.Sincethesolutionofthesecondproblemisstraightforward,mostofthe proposedworkgoesinforsolvingthefirstproblem. Anapriorialgorithmhasbeenproposedin[19], which was the basis for many of the forthcoming algorithms. A two-pass algorithm is presented in [11]. It consumes only two database scan passes, while a priori is a multi-pass algorithm and needsuptoc+1databasescans,wherecisthenumberofitems(attributes). Associationrulesmining isapplicableinnumerousdatabasecommunities. Ithaslargeapplicationsintheretailindustryto improvemarketbasketanalysis[7]. Streaming-Rulesisanalgorithmdevelopedby[9]toreportan associationbetweenpairsofelementsinstreamsforpredictivecachinganddetectingthepreviously Symmetry2018,10,106 3of19 undetectablehitinflationattacksinadvertisingnetworks. Runningminingalgorithmsonnumerical attributesmayresultinalargesetofcandidates. Eachcandidatehassmallsupportandmanyrules havebeengeneratedwithuselessinformation,e.g.,theageattribute,salaryattribute,andstudents’ grades. Manypartitioningalgorithmshavebeendevelopedtosolvethenumericalattributesproblem. The proposed algorithms faced two problems. The first problem was the partitioning of attribute domainintomeaningfulpartitions. Thesecondproblemwasthelossofmanyusefulrulesdueto thesharpboundaryproblem. Consequently,somerulesmayfailtoachievetheminimumsupport thresholdbecauseoftheseparatingofitsdomainintotwopartitions. Fuzzy sets have been introduced to solve these two problems. Using fuzzy sets make the resultedassociationrulesmoremeaningful. Manyminingalgorithmshavebeenintroducedtosolve the quantitative attributes problem using fuzzy sets proposed algorithms in [13–27] that can be separatedintotwotypesrelatedtothekindofminimumsupportthreshold,fuzzyminingbasedon single-minimumsupportthreshold,andfuzzyminingbasedonmulti-minimumsupportthreshold[21]. Neutrosophictheorywasintroducedin[28]togeneralizefuzzytheory. In[29–32],theneutrosophic theoryhasbeenproposedtosolveseveralapplicationsandithasbeenusedtogenerateasolution based on neutrosophic sets. Single-valued neutrosophic set was introduced in [33] to transfer the neutrosophictheoryfromthephilosophicfieldintothemathematicaltheory,andtobecomeapplicable inengineeringapplications. In[33],adifferentiationhasbeenproposedbetweenintuitionisticfuzzy setsandneutrosophicsetsbasedontheindependenceofmembershipfunctions(truth-membership function,falsity-membershipfunction,andindeterminacy-membershipfunction). Inneutrosophic sets,indeterminacyisexplicitlyindependent,andtruth-membershipfunctionandfalsity-membership functionareindependentaswell.Inthispaper,weintroduceanapproachthatisbasedonneutrosophic sets for mining association rules, instead of fuzzy sets. Also, a comparison resulted association rulesinbothofthescenarioshasbeenpresented. In[34],anattempttoexpresshowneutrosophic sets theory could be used in data mining has been proposed. They define SVNSF (single-valued neutrosophicscorefunction)toaggregateattributevalues. In[35],analgorithmhasbeenintroduced tominingvagueassociationrules. Itemspropertieshavebeenaddedtoenhancethequalityofmining associationrules. Inaddition, almostsolditems(itemshasbeenselectedbythecustomer, butnot checkedout)wereaddedtoenhancethegeneratedassociationrules. AH-pairDatabaseconsisting of a traditional database and the hesitation information of items was generated. The hesitation informationwascollected,dependingonlineshoppingstores,whichmakeiteasiertocollectthattype ofinformation, whichdoesnotexistintraditionalstores. Inthispaper, wearethefirsttoconvert numericalattributes(items)intoneutrosophicsets. Whilevagueassociationrulesaddnewitemsfrom thehesitatinginformation,ourframeworkaddsnewitemsbyconvertingthenumericalattributesinto linguisticterms. Therefore,thevagueassociationruleminingcanberunontheconverteddatabase, whichcontainsnewlinguisticterms. ResearchContribution Detectinghiddenandaffinitypatternsfromvarious,complex,andbigdatarepresentsasignificant roleinvariousdomainareas,suchasmarketing,business,medicalanalysis,etc. Thesepatternsare beneficial for strategic decision-making. Association rules mining plays an important role as well in detecting the relationships between patterns for determining frequent itemsets, since classical associationrulescannotusealltypesofdatafortheminingprocess. Binarydatacanonlybeusedto formclassicalrules,whereitemseitherexistindatabaseornot. However,whenclassicalassociation rules deal with quantitative database, no discovered rules will appear, and this is the reason for innovatingquantitativeassociationrules. Thequantitativemethodalsoleadstothesharpboundary problem, where the item is below or above the estimation values. The fuzzy association rules are introducedtoovercometheclassicalassociationrulesdrawbacks. Theiteminfuzzyassociationrules hasamembershipfunctionandafuzzyset. Thefuzzyassociationrulescandealwithvaguerules, butnotinthebestmanner,sinceitcannotconsidertheindeterminacyofrules. Inordertoovercome Symmetry2018,10,106 4of19 drawbacks of previous association rules, a new neutrosophic association rule algorithm has been introduced in this research. Our proposed algorithm deals effectively and efficiently with vague rulesbyconsideringnotonlythemembershipfunctionofitems,butalsotheindeterminacyandthe falsityfunctions. Therefore,theproposedalgorithmdiscoversallofthepossibleassociationrulesand minimizesthelosingprocessesofrules,whichleadstobuildingefficientandreliabledecision-making system. By comparing our proposed algorithm with fuzzy approaches, we note that the number ofassociationrulesisincreased,andnegativerulesarealsodiscovered. Theseparationofnegative association rules from positive ones is not a simple process, and it helps in various fields. As an example, inthemedicaldomain, bothpositiveandnegativeassociationruleshelpnotonlyinthe diagnosisofdisease,butalsoindetectingpreventionmanners. Therestofthisresearchisorganizedasfollows. Thebasicconceptsanddefinitionsofassociation rules mining are presented in Section 2. A quick overview of fuzzy association rules is described inSection3. TheneutrosophicassociationrulesandtheproposedmodelarepresentedinSection4. A case study of Telecom Egypt Company is presented in Section 5. The experimental results and comparisonsbetweenfuzzyandproposedassociationrulesarediscussedinSection6. Theconclusions aredrawninSection7. 2. AssociationRulesMining Inthissection,weformulatethe|D|transactionsfromtheminingassociationrulesforadatabase D.Weusedthefollowingnotations: (i) I = {i ,i ,...i }representsallthepossibledatasets,calleditems. 1 2 m (ii) TransactionsetTisthesetofdomaindataresultingfromtransactionalprocessingsuchasT⊆I. (iii) ForagivenitemsetX⊆IandagiventransactionT,wesaythatTcontainsXifandonlyifX⊆T. (iv) σ : the support frequency of X, which is defined as the number of transactions out of D that X containX. (v) s: thesupportthreshold. Xisconsideredalargeitemset,ifσ ≥ |D|×s. Further,anassociationruleisanimplicationof X theform X ⇒Y,whereX ⊆ I, Y ⊆ I andX∩Y = ϕ. Anassociationrule X ⇒Y isaddressedinDwithconfidencecifatleastctransactionsoutofD containbothXandY.Therule X ⇒Y isconsideredasalargeitemsethavingaminimumsupportsif: σX∪Y ≥ |D|×s. For a specific confidence and specific support thresholds, the problem of mining association rulesistofindoutalloftheassociationruleshavingconfidenceandsupportthatislargerthanthe correspondingthresholds. Thisproblemcansimplybeexpressedasfindingallofthelargeitemsets, wherealargeitemsetLis: L = {X|X ⊆ I∧σ ≥ |D|×s}. X 3. FuzzyAssociationRules Miningofassociationrulesisconsideredasthemaintaskindatamining. Anassociationrule expressesaninterestingrelationshipbetweendifferentattributes.Fuzzyassociationrulescandealwith bothquantitativeandcategoricaldataandaredescribedinlinguisticterms,whichareunderstandable terms[26]. LetT = {t ,...,t }beadatabasetransactions. Eachtransactionconsistsofanumberofattributes 1 n (items). Let I = {i ,...,i } be a set of categorical or quantitative attributes. For each attribute i , 1 m k (k =1,...,m),weconsider{n ,...,n }associatedfuzzysets. Typically,adomainexpertdetermines 1 k themembershipfunctionforeachattribute. Thetuple< X,A >iscalledthefuzzyitemset,whereX⊆I(setofattributes)and Aisasetof fuzzysetsthatisassociatedwithattributesfromX. Symmetry2018,10,106 5of19 Followingisanexampleoffuzzyassociationrule: IFsalaryishighandageisoldTHENinsuranceishigh Beforetheminingprocessstarts,weneedtodealwithnumericalattributesandpreparethemfor theminingprocess. Themainideaistodeterminethelinguistictermsforthenumericalattributeand definetherangeforeverylinguisticterm. Forexample,thetemperatureattributeisdeterminedbythe linguisticterms{verycold,cold,cool,warm,hot}. Figure1illustratesthemembershipfunctionofthe temperatureattribute. Figure1.Linguistictermsofthetemperatureattribute. Themembershipfunctionhasbeencalculatedforthefollowingdatabasetransactionsillustrated inTable1. Table1.MembershipfunctionforDatabaseTransactions. Transaction Temp. MembershipDegree T1 18 1cool T2 13 0.6cool,0.4cold T3 12 0.4cool,0.6cold T4 33 0.6warm,0.4hot T5 21 0.2warm,0.8cool T6 25 1warm Weaddthelinguisticterms{verycold,cold,cool,warm,hot}tothecandidatesetandcalculate thesupportforthoseitemsets. Afterdeterminingthelinguistictermsforeachnumericalattribute, thefuzzycandidatesethavebeengenerated. Table 2 contains the support for each itemset individual one-itemsets. The count for every linguistictermhasbeencalculatedbysummingitsmembershipdegreeoverthetransactions. Table3 showsthesupportfortwo-itemsets. Thecountforthefuzzysetsisthesummationofdegreesthat resultedfromthemembershipfunctionofthatitemset. Thecountfortwo-itemsethasbeencalculated bysummingtheminimummembershipdegreeofthe2items. Forexample,{cold,cool}hascount0.8, whichresultedfromtransactionsT2andT3. FortransactionT2,membershipdegreeofcoolis0.6and membershipdegreeforcoldis0.4,sothecountforset{cold,cool}inT2is0.4. Also,T3hasthesame countfor{cold,cool}. So,thecountofset{cold,cool}overalltransactionsis0.8. Symmetry2018,10,106 6of19 Table2.1-itemsetsupport. 1-itemset Count Support Verycold 0 0 Cold 1 0.17 Cool 2.8 0.47 Warm 1.6 0.27 Hot 0.6 0.1 Table3.2-itemsetsupport. 2-itemset Count Support {Cold,cool} 0.8 0.13 {Warm,hot} 0.4 0.07 {warm,cool} 0.2 0.03 Insubsequentdiscussions,wedenoteanitemsetthatcontainskitemsask-itemset. Thesetofall k-itemsetsinLisreferredasL . k 4. NeutrosophicAssociationRules Inthissection,weoverviewsomebasicconceptsoftheNSsandSVNSsovertheuniversalsetX, andtheproposedmodelofdiscoveringneutrosophicassociationrules. 4.1. NeutrosophicSetDefinitionsandOperations Definition 1 ([33]). Let X be a space of points and x∈X. A neutrosophic set (NS) A in X is definite by a truth-membershipfunction T (x),anindeterminacy-membershipfunction I (x)andafalsity-membership A A function F (x). T (x), I (x)and F (x)arerealstandardorrealnonstandardsubsetsof]−0,1+[. Thatis A A A A T (x): X→]−0,1+[, I (x): X→]−0,1+[andF (x): X→]−0,1+[. Thereisnorestrictiononthesumof A A A T (x), I (x)andF (x),so0− ≤supT (x)+sup I (x)+supF (x)≤3+. A A A A A A Neutrosophic is built on a philosophical concept, which makes it difficult to process during engineeringapplicationsortouseittorealapplications. Toovercomethat,Wangetal.[31],definedthe SVNS,whichisaparticularcaseofNS. Definition2. LetXbeauniverseofdiscourse. Asinglevaluedneutrosophicset(SVNS) AoverXisanobject takingtheform A={(cid:104)x,T (x), I (x),F (x)(cid:105): x∈X},whereT (x): X→[0,1], I (x): X→[0,1]andF (x): A A A A A A X→[0,1]with0≤T (x)+ I (x)+F (x)≤3forallx∈X.TheintervalsT (x),I (x)andF (x)represent A A A A A A thetruth-membershipdegree,theindeterminacy-membershipdegreeandthefalsitymembershipdegreeofxtoA, respectively.Forconvenience,aSVNnumberisrepresentedbyA=(a,b,c),wherea,b,c∈[0,1]anda+b+c≤3. Definition3(Intersection)([31]).FortwoSVNSsA=(cid:104)T (x),I (x),F (x)(cid:105)andB=(cid:104)T (x),I (x),F (x)(cid:105), A A A B B B theintersectionoftheseSVNSsisagainanSVNSswhichisdefinedasC= A∩Bwhosetruth,indeterminacyand falsity membership functions are defined as T (x) = min(T (x),T (x)), I (x) = min(I (x),I (x)) and C A B A A B F (x) = max(F (x),F (x)). C A B Definition4(Union)([31]). FortwoSVNSs A = (cid:104)T (x),I (x),F (x)(cid:105)and B = (cid:104)T (x),I (x),F (x)(cid:105), A A A B B B theunionoftheseSVNSsisagainanSVNSswhichisdefinedasC = A∪Bwhosetruth,indeterminacyand falsitymembershipfunctionsaredefinedasT (x) = max(T (x),T (x)), I (x) = max(I (x),I (x))and C A B A A B F (x) = min(F (x),F (x)). C A B Symmetry2018,10,106 7of19 Definition5(Containment)([31]). Asinglevaluedneutrosophicset AcontainedintheotherSVNSB, denotedby A ⊆ BifandonlyifT (x) ≤ T (x), I (x) ≤ I (x)andF (x) ≥ F (x)forallxinX. A B A B A B Next,weproposeamethodforgeneratingtheassociationruleundertheSVNSenvironment. 4.2. ProposedModelforAssociationRule Inthispaper,weintroduceamodeltogenerateassociationrulesofform: X →Y whereX∩Y = ϕandX,Yareneutrosophicsets. Our aim is to find the frequent itemsets and their corresponding support. Generating an associationrulefromitsfrequentitemsets,whicharedependentontheconfidencethreshold,arealso discussed here. This has been done by adding the neutrosophic set into I, where I is all of the possibledatasets,whicharereferredasitems. So I = N∪Mwhere Nisneutrosophicsetand Mis classicalsetofitems. Thegeneralformofanassociationruleisanimplicationoftheform X →Y, whereX ⊆ I, Y ⊆ I,X∩Y = ϕ. Therefore,anassociationrule X →Y isaddressedinDatabaseDwithconfidence‘c’ifatleastc transactionsoutofDcontainsbothXandY. Ontheotherhand,therule X →Y isconsideredalarge itemsethavingaminimumsupportsifσX∪Y ≥ |D|×s. Furthermore,theprocessofconvertingthe quantitativevaluesintotheneutrosophicsetsisproposed,asshowninFigure2. Figure2.Theproposedmodel. The proposed model for the construction of the neutrosophic numbers is summarized in the followingsteps: Symmetry2018,10,106 8of19 Step1 Setlinguistictermsofthevariable,whichwillbeusedforquantitativeattribute. Step2 Definethetruth,indeterminacy,andthefalsitymembershipfunctionsforeachconstructed linguisticterm. Step3 ForeachtransactiontinT,computethetruth-membership,indeterminacy-membershipand falsity-membershipdegrees. Step4 Extend each linguistic term l in set of linguistic terms L into T , I , and F to denote truth- L L L membership,indeterminacy-membership,andfalsity-membershipfunctions,respectively. Step5 Foreachk-itemsetwherek={1,2,...,n},andnnumberofiterations. • calculate count of each linguistic term by summing degrees of membership for each i=t transactionasCount(A) = ∑ µ (x)whereµ isT ,I orF . A A A A A i=1 • calculatesupportforeachlinguisticterms = Count(A) . No.of trnsactions Step6 Theaboveprocedurehasbeenrepeatedforeveryquantitativeattributeinthedatabase. In order to show the working procedure of the approach, we consider the temperature as an attribute and the terms “very cold”, “cold”, “cool”, “warm”, and “hot” as their linguistic terms to represent the temperature of an object. Then, following the steps of the proposed approach, constructtheirmembershipfunctionasbelow: Step1 Theattributetemperature’hassetthelinguisticterms“verycold”,“cold”,“cool”,“warm”, and“hot”,andtheirrangesaredefinedinTable4. Table4.Linguistictermsranges. LinguisticTerm CoreRange LeftBoundaryRange RightBoundaryRange VeryCold −∞–0 N/A 0–5 Cold 5–10 0–5 10–15 Cool 15–20 10–15 20–25 Warm 25–30 20–25 30–35 Hot 35–∞ 30–35 N/A Step2 Based on these linguistic term ranges, the truth-membership functions of each linguistic variablearedefined,asfollows:   1 ; for x ≤0 Tvery−cold(x) = (5−x)/5 ; for0< x <5  0 ; for x ≥5   1(15−x)/5 ;; ffoorr510≤<xx≤<1015 T (x) = cold  0x/5 ;; ffoorr0x<≥x15<or5x ≤0   1(25−x)/5 ;; ffoorr2105<≤ xx <≤2250 T (x) = cool  0(x−10)/5 ;; footrhe1r0w<isex <15   1(35−x)/5 ;; ffoorr2350≤< xx ≤<3305 T (x) = warm  0(x−20)/5 ;; footrhe2r0w<isex <25 Symmetry2018,10,106 9of19   1 ; for x ≥35 T (x) = (x−30)/5 ; for30< x <35 hot  0 ; otherwise Thefalsity-membershipfunctionsofeachlinguisticvariablearedefinedasfollows:   0 ; for x ≤0 Fvery−cold(x) = x/5 ; for0< x <5 ;  1 ; for x ≥5   0(x−10)/5 ;; ffoorr510≤<xx≤<1105 F (x) = cold  1(5−x)/5 ;; ffoorr0x<≥x15<or5x ≤0   0(x−20)/5 ;; ffoorr2105<≤ xx <≤2250 F (x) = cool  1(15−x)/5 ;; footrhe1r0w<isex <15   0(x−30)/5 ;; ffoorr2350≤< xx ≤<3305 F (x) = warm  1(25−x)/5 ;; footrhe2r0w<isex <25   0 ; for x ≥35 F (x) = (35−x)/5 ; for30< x <35 hot  1 ; otherwise Theindeterminacymembershipfunctionsofeachlinguisticvariablesaredefinedasfollows:   0(x+2.5)/5 ;; ffoorr−x ≤2.5−≤2.5x ≤2.5 I (x) = very−cold  0(7.5−x)/5 ;; ffoorr2x.5≥≤7.x5≤7.5  (x+2.5)/5 ; for2.5≤ x ≤2.5  (7.5−x)/5 ; for2.5≤ x ≤7.5 I (x) = (x−7.5)/5 ; for7.5≤ x ≤12.5 cold  0(17.5−x)/5 ;;oftohre1rw2.i5se≤ x ≤17.5  (x−7.5)/5 ; for7.5≤ x ≤12.5  (17.5−x)/5 ; for12.5≤ x ≤17.5 I (x) = (x−17.5)/5 ; for17.5≤ x ≤22.5 cool  0(27.5−x)/5 ;;oftohre2rw2.i5se≤ x ≤27.5  (x−17.5)/5 ; for17.5≤ x ≤22.5  (27.5−x)/5 ; for22.5≤ x ≤27.5 Iwarm(x) = (x−27.5)/5 ; for27.5≤ x ≤32.5  0(37.5−x)/5 ;;oftohre3rw2.i5se≤ x ≤37.5 Symmetry2018,10,106 10of19   (x−27.5)/5 ; for27.5≤ x ≤32.5 I (x) = (37.5−x)/5 ; for32.5≤ x ≤37.5 hot  0 ;otherwise ThegraphicalmembershipdegreesofthesevariablesaresummarizedinFigure3. Thegraphical falsity degrees of these variables are summarized in Figure 4. Also, the graphical indeterminacy degreesofthesevariablesaresummarizedinFigure5. Ontheotherhand,foraparticularlinguistic term,‘Cool’inthetemperatureattribute,theirneutrosophicmembershipfunctionsarerepresentedin Figure6. Figure3.Truth-membershipfunctionoftemperatureattribute. Figure4.Falsity-membershipfunctionoftemperatureattribute. Figure5.Indeterminacy-membershipfunctionoftemperatureattribute.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.