ebook img

Neutrinoless double beta decay PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrinoless double beta decay

PRAMANA (cid:13)c IndianAcademyofSciences —journalof physics Neutrinoless double beta decay KAIZUBERa,∗ a InstituteforNuclearandParticlePhysics,TUDresden,Germany 2 1 Abstract. The physics potential of neutrinoless double beta decay is discussed. Furthermore, 0 experimentalconsiderationsarepresentedaswellasthecurrentstatusofexperiments. Finallyan 2 outlooktowardsthefuture,workonnuclearmatrixelementsandalternativeprocessesisgiven. n a Keywords. Doublebetadecay,neutrinomass,BeyondStandardModelPhysics J 3 PACSNos. 23.40.-s,14.60Pq 2 ] x 1. Introductionandphysics e - l Neutrinosplayacrucialroleinmodernparticle,nuclearandastrophysicsincludingcos- c mology. It has been the major achievement of the last 15 years to show that neutrinos u n have a non-vanishing rest mass. The evidence arises from a deficit of upward going at- [ mospheric muon neutrinos confirmed by long baseline accelerator experiments and the solutionofthesolarneutrinoproblembeingconfirmedbynuclearreactors.Allcanbeex- 1 v plainedbyneutrinooscillations,whicharedependingmassdifferences∆m2ij =m2j−m2i 5 assuming a two flavour mixing only. The determination of absolute neutrino masses is 6 nowamajorissue,becauseneutrinooscillationexperimentsdonotallowthis. Theclassi- 6 calwaysearchforarestmassoftheneutrinoisthestudyoftheendpointregionofelectron 4 spectra in beta decay (see [1] for a recent review). The KATRIN experiment is well on . 1 itswaytoimprovethecurrentboundofabout2.2eVforν¯ byanorderofmagnitude. e 0 Further bounds on the total sum of neutrino masses can be obtained from cosmological 2 studies. Anotherlaboratoryprocessistherarenucleardecayofneutrinolessdoublebeta 1 : decay. v i (Z,A)→(Z+2,A)+2e− (0νββ-decay) (1) X r Singlebetadecaymustbeforbiddenoratleaststronglysuppressedtoobservethisdecay a and35potentialisotopesexistinnature. AscanbeseenfromEquation1thegivendecay modeisviolatingtotalleptonnumberbytwounitsandthusnotallowedintheStandard Model. Beingadecaytheobservableisahalf-lifewhichcanbelinkedtothequantityof interest(cid:15)via (T0ν )−1 =G |M |2 (cid:15)2 (2) 1/2 PS Nuc with G being the phase space, | M | the involved nuclear matrix element for the PS Nuc physicsprocessconsideredtodescribethisdecayand(cid:15)thequantityofinterest. Various ∗[email protected] 1 KaiZuber BSM processes can be considered among them light and heavy Majorana neutrino ex- change,right-handedweakcurrents,R-parityviolatingSUSY(λ(cid:48) )anddoublecharged 111 Higgs bosons. If 0νββ-decayis ever observed it was shown that this would imply that neutrinos are Majorana particles [2]. However, given all the possible processes it will become an important question what the individual contributions of the considered pro- cesseswillbe. TheLHCwillhelptorestrictthisbyperformingsearchesfornewparti- clesintheTeVrange. AnexamplehowthiscomplementaryinformationfromLHCand 0νββ-decaycan be used within the context of left-right symmetric theories is given in [3]. Forarecentextensivereviewontheparticlephysicsindoubledecaysee[4]. ThestandardinterpretationconsideredhereistheoneusinglightMajorananeutrinoex- change. Inthiscase(cid:15)istheeffectiveMajorananeutrinomass(cid:104)m (cid:105)givenby ee (cid:88) (cid:15)≡(cid:104)m (cid:105) =| U2m | (3) ee ei i i withU2 asthemixingmatrixelementscontainingtheelectronneutrino. ei 2. Doublebetadecayandneutrinooscillationresults ForthefollowingdiscussionarestrictiontothelightMajorananeutrinocaseisdone. It isevidentfromEq.3thattheexpectationfor(cid:104)m (cid:105)indoublebetadecaydependsonthe ee neutrinooscillationparameters. Itshouldbenotedthatthemixingmatrixofrelevanceis givenby U =U (θ ,θ ,θ ,eiδ)×diag(1,eiα,eiβ) (4) PMNS 12 13 23 with the standard leptonic mixing matrix U and two additional CP-phases α and PMNS β, called Majorana phases, which appear if neutrinos are their own antiparticle. These phasesdonotshowupinoscillationexperiments. Hence,(cid:104)m (cid:105)canbewrittenasasum ee ofthreeterms (cid:104)m (cid:105) =|m1 |+|m2 |e2iα+|m3 |e2iβ (5) ee e e e withtheindividualcontributionsgivenas m1 =|U |2 m =m cos2θ cos2θ e e1 1 1 12 13 m2 =|U |2 m =m sin2θ cos2θ (6) e e2 2 2 12 13 m3 =|U |2 m =m sin2θ e e3 3 3 13 Latest global fits to available oscillation parameters are given in [5, 6]. An important newingredientisthat3-flavourfitstosolarneutrinos[7],observationsfromT2K[8]and MINOS[9]aswellasfirstDoubleChoozresults[10]favouranon-zerovalueofθ . As 13 theoscillationsdonotfittheabsolutescaletherearetwooptionsforarrangingthemass eigenstates,eitherm > m > m (normalhierarchy,NH)orm > m > m (inverse 3 2 1 2 1 3 hierarchy,IH).Iftheneutrinomassesturnouttobeclosethethecurrentlimitfrombeta decaythereisaquasidegeneracy(m ≈m ≈m ≡m ). Incaseofhierarchiesthetwo 1 2 3 0 largermassescanbeexpressedas (cid:113) (cid:112) m = m2+∆m2 m = m2+∆m2 (normal) 2 1 (cid:12) 3 1 atm (cid:113) (cid:112) m = m2+∆m2 +∆m2 m = m2+∆m2 (inverted) 2 3 (cid:12) atm 1 3 atm 2 KaiZuber (7) with the solar splitting ∆m2 = 7.59+0.20 × 10−5eV2 and the atmospheric splitting (cid:12) −0.18 ∆m2 = 2.49±0.09×10−3eV2 (normal),∆m2 = −2.343+0.10×10−3eV2 (in- atm atm −0.09 verted)[5]. Theprincipalbehaviourof(cid:104)m (cid:105)asafunctionofthelightestmasseigenstate ee isshowninFigure1foranexemplaricvalueofsin22θ =0.02andthedependenceof 13 individual parts on the parameters. For (cid:104)m (cid:105)values larger than about 100 meV neu- ee Figure1. TheeffectiveMajorananeutrino mass(cid:104)m (cid:105)asafunction ofthesmallest ee neutrino mass and the principal dependence of individual features on the oscillation parameters.Avalueofsin22θ =0.02hasbeenassumed,furthermoret2 =tan2θ . 13 12 12 Uncertaintiesintroducedduetotheinvolvednuclearmatrixelementsarenotincluded (from[11]). trinosarealmostdegenerate,theinvertedhierarchycoversarangebetweenabout10-50 meVandbelow10meVistheregionofthenormalhierachy. Ascanbeseen,intheNH therecanbeacancellationamongtheterms, theallowedregionforthatbecomeslarger withincreasingsin22θ . ThereisnosucheffectintheIHbecauseofthenon-maximal 13 solarmixingangleθ . Inadditionthegapbetweenthetwobandsinthehierarchicalre- 12 gionwillshrinkwithincreasingsin22θ . Half-livesfortheIHareintheregionbeyond 13 1026yearswhilehalf-livesintheNHarewellbeyond1028years. 3. Generalexperimentalconsiderations Evidently measurements of half-lives well beyond 1025 years are by now means trivial. AssignalfortheprocessgiveninEquation(1)servesapeakinthesumenergyspectrum ofthetwoelectronsequivalenttotheQ-valueofthenucleartransition.Thecorresponding half-lifeincaseofnobackgroundisgivenbytheradioactivedecaylaw T0ν =ln2matN /N (8) 1/2 A ββ withmtheusedmass,atheisotopicalabundanceofthedoublebetaemitter,tthemea- suringtime,N theAvogadroconstantandN thenumberofdoublebetaevents,which A ββ 3 KaiZuber has to be taken from the experiment. If no peak is observed and a constant background (i.e. all potential energy depositions in the region of interest, i.e. around the Q-value, notbeingneutrinolessdoublebetadecay)isassumedscalinglinearlywithtime, N is ββ derivedas (cid:114) M ×t T0ν ∝a×(cid:15) (9) 1/2 B×∆E where (cid:15) is the efficiency for detection of the total energy of both electrons, ∆E is the energy resolution at the peak position and B the background index normally given in counts/keV/kg/year. Hence, the most crucial parameters are a high detection efficiency and high abundance of the isotope of interest. This is the reason why almost all next generationexperimentsareusingenrichedmaterialsandthe”source=detector”approach. Furthermore,theenergyresolution1 shouldbeasgoodaspossibletoconcentratethefew expectedeventsinasmallregionandideallytheexperimentshouldbebackgroundfree. AnirreduciblebackgroundistheStandardModelprocess2νββ-decay (Z,A)→(Z+2,A)+2e−+2ν (2νββ-decay). (10) e Hereagainenergyresolutionmatters,becauseofthecontinuousspectrumofthe2νββ-decaymode s nit 0.016 2(cid:105)(cid:96)(cid:96) 0(cid:105)(cid:96)(cid:96) u y ar 0.014 n=7 r bit ar 0.012 n=5 n=1 n=3 0.01 0.008 0.006 0.004 0.002 0 250 500 750 1000 1250 1500 1750 2000 energy [keV] Figure2. Schematicplotofthesumenergyspectrumofthetwoelectronsindouble beta decay. 0νββ-decayresults in a peak at the Q-value of the transition. Various modescanbecharacterisedbythephasespacedependence(Q-E)n. Themoden=5is the2νββ-decaywhilethemodesn=1,3,7involvetheemissionofamajoron,aGold- stonebosonlinkedtothespontaneousbreakingofleptonnumber.Thedifferentmodes belongtodifferentbehavioursofthemajoronwithrespecttoweakisospin. Theindi- vidualcontributionsarenottoscale. itisonlyitshighenergypartleakingintothepeakregion(seeFigure(2)). Nevertheless, 1Care must be taken as for traditional reasons different detector technologies use either the Gaussian σ or the Full Width at Half Maximum ∆E to quote energy resolution. The relation among the quantities is ∆E=2.35σ. 4 KaiZuber thiscanbeaworryasthehalf-lifeistypicallyseveralordersofmagnitudeshorterthanthe expectedonefor0νββ-decay. Asthedecayratefor0νββ-decay scaleswithQ5 only isotopeswithQ-valuesabove2MeVareconsideredforexperimentalsearches. Theyare listedtogetherwithsomeimportantnumbersinTable(1). Isotope nat. abund. Q-value T2ν Experiment 1/2 (%) (keV) (1020yrs) 48Ca 0.187 4272±4 0.44+0.06 CANDLES −0.05 76Ge 7.8 2039.006±0.050 15±1 GERDA,MAJORANA 82Se 9.2 2995.5±1. 9 0.92±0.07 SuperNEMO,LUCIFER 96Zr 2.8 3347.7±2.2 0.23±0.02 - 100Mo 9.6 3034.40±0.17 0.071±0.004 AMoRE 110Pd 11.8 2017.85±0.64 - - 116Cd 7.5 2813.50±0.13 0.28±0.02 COBRA,CdWO 4 124Sn 5.64 2287.8±1.5 - - 130Te 34.5 2527.518±0.013 6.8+1.2 CUORE −1.1 136Xe 8.9 2457.83±0.37 21.1±2.5 EXO,NEXT KamLAND-Zen 150Nd 5.6 3371.38±0.20 0.082±0.009 SNO+,DCBA Table 1. Table showing the eleven candidate isotopes with a Q-value larger than 2 MeV.Givenarethenaturalabundances,Q-valuesasdeterminedfromprecisePenning trap measurements (those with sub keV errors) or from the Atomic Mass Evaluation 2003[12],themeasuredaveraged2νββ-decayhalflivesasrecommendedin[13]plus the recent measurement of 136Xe[14]. The last column shows the experiments ad- dressing the measurement of the corresponding isotope. For some experiments only the”default”isotopeismentionedastheyhavetheoptionofexploringseveralones. Severaladditionalresearchanddevelopmentprojectsareongoing. As mentioned, most experiments follow the approach that the source is equal to the detector, i.e. building a detector which contains the isotope of interest. Technologies usedforthataresemiconductors,cryogenicbolometers,scintillatorsandliquidnoblegas detectors. ThealternativeistousetrackingdevicesinformofTPCscontainingthinfoils ofdoublebetaemitters. Heresingleelectronspectraandopeninganglescanbemeasured aswell. 4. Experimentalstatus Threedifferentgoalsareconsideredforfutureinvestigationdependingontheoutcomeof theindividualsteps. Thefirstoneistoprobetheclaimedobservationof0νββ-decay in 76Gewithahalf-lifeof2.23±0.04×1025yrs[16,17].Ifthisisconfirmed,thenextgenera- tionwillcollectsufficientstatisticsforaprecisionhalf-lifemeasurement.Itmightbeeven possibletoperformanintrinsicconsistencycheckbyalsolookingatthe0νββ-decay de- cayintothefirstexcitedstate[18]. Furthermore,duetothe”multi-isotope”approachan observation in one isotope predicts a half-life for the other ones by taking into account theuncertaintiesinnuclearmatrixelements,seesection(6).Observingpeaksatdifferent positionsinenergieswithintherightrangeofhalf-livesexcludespotentialunrecognised backgrounds. Anyhow, the ”multi-isotope” ansatz is needed to compensate for matrix elementuncertainties. In case the evidence is not confirmed, the next goal must be the region of the inverted hierarchy,i.e(cid:104)m (cid:105)below≈50meV.Theneccessaryhalf-liferequirementtotouchthis ee 5 KaiZuber region is given in [19]. As the requirements on mass and background for this purpose are already demanding, fully excluding the IH is more than challenging. If there is no signal found in the IH the final is the exploration of the normal hierarchy. However, forthistonscaleexperimentswithextraordinarylowbackgroundhavetobeconsidered and completely new background components have to taken into account, for example neutrino-electron scattering due to solar neutrinos [20]. For that half-lives well beyond 1028yrshavetobemeasured. Currentlythefieldisinthetransitiontowardsthenextgenerationofexperiments. The year2011isseeingthestartoffournewdoublebetaexperiments,namelyGERDA(using 76Ge),EXOandKamLAND-Zen(using136Xe)andCANDLES(using48Ca). GERDA [21]isanextgenerationexperimentbasedonGe-semiconductorscontaining76Gebased intheGranSassoUndergroundLaboratory(Italy). Theideaistorunbarecrystalswithin LAr which serves as shielding and cooling. In a first phase a total of eight isotopically enriched detectors (from the former Heidelberg-Moscow and IGEX experiments) with a total mass of 17.7 kg have been deployed and official data taking started on 1. Nov. 2011. Aspectrumfromacommissioningrunusing3enricheddetectorsisshowninFig- ure(3). Ascanbeseenthe2νββ-decaycontributionisalreadyclearlyvisible. Currently, for a second phase another 35.5 kg of enriched Ge is in the process of conversion into BEGe detectors. These point-contact detectors allow a optimised separation of single site energy depositions (like double beta decay) and multiple site interactions (most of thebackgroundlikeComptonscatteringwithanadditionalsecondinteraction)byusing pulseshapeanalysis[22]. Due to the relative cheap enrichment of noble gases, two large scale experiments based onenriched136Xehavestarted. FirstisEXO-200,usingabout175kgLXeinformofa TPC located at WIPP (USA). The early data look very promising (Figure 3) and a first half-lifeforthe2νββ-decayof136Xecouldbedetermined, seeTable(1). Auniqueop- tionexploredforthefuturewouldbethedetectionofthedaughterionwhichshouldresult inmajorbackgroundreduction. AsecondXeapproachisKamLAND-Zenusingthewell understood infrastructure of the KamLAND experiment. To perform double beta decay with Xe-loaded liquid scintillator a special mini-balloon was constructed and deployed withinKamLAND.Inthiswayabout330kgofenrichedXecouldbefilledinthedetec- toranddatatakinghasstartedinSeptember2011. Last but not least there is CANDLES using 305 kg of CaF scintillators, focussing on 2 48Ca,theisotopewiththehighestQ-valueofalldoublebetaemitters. Theexperimentis installedintheKamiokamine(Japan)anddatatakinghasstartedrecently. 5. Futureexperimentsandideas Withtheexperimentsmentionedintheprevioussessionrunning,therewillbemoreonline inafewyearstimeandadditionallystillinterestingresearchanddevelopmentisongoing, afewofthemarementionedhere,seeTable(1). Fromthesemiconductorpointofview, twomoreprojectsexist,MAJORANAandCOBRA.MAJORANAisusingGe-detectors as GERDA and is considering to have up to 30 kg enriched detectors running by 2014 intheSanfordUndergroundLaboratory(USA).COBRAisexploringCdZnTesemicon- ductor for the search of 116Cd. The detectors are much smaller than the typically used Ge-diodes thus having a much higher granularity and discrimination against multi-site events will be realised by multi-detector events. Furthermore, for practical purposes it isconvenientthatthesedetectorswillrunatroomtemperature. Auniquefeaturewhich 6 KaiZuber Figure3. Left: Spectrum from a commissioning run of GERDA using 3 enriched Ge-detectors.Thethreemajorvisiblecomponentsarethe39Ar-decay,a42Kcontribu- tiondueto42Ardecayandthe2νββ-decayof76Ge.Right:InitialresultsofEXO-200 leadtoafirstdiscoveryandhalf-lifemeasurementofthe2νββ-decayof136Xebeing thedominantcontributiontothespectrum(from[15],detailscanbefoundin[14]). isexploredispixelisationwhichshouldallowmassivebackgroundreductionbyparticle identificationduetotracking. Aprototypedetectorofabout0.5kgiscurrentlyinstalled intheGranSassoLaboratory. InasimilarspiritasKamLAND-Zenanotherlargescalescintillatorexperimentisinthe buildingupphase. SNO+aimstouseinasecondphaseofoperation(afirstphaseshould bepurescintillatormainlyforthestudyofsolarneutrinos)1000tofNd-loadedscintillator for the search of 150Nd decay. The default assumption is a 0.1% loading of the scintil- lator, resultinginanamountof43kgof150Nd, whileanoptimisationof0.3%loading isunderinvestigation. 150NdhasthesecondhighestQ-valueofalldoublebetaisotopes (3371 keV) and was always among the theoretically most preferred isotopes. SNO+ is supposedtostartin2013. Othergroupsexplorevarioussolidstatescintillators,forexam- pleCdWO . 4 A different class of detectors not mentioned yet but with a lot of options are cryogenic bolometers. The most advanced approach is CUORE using 750 kg of TeO crystals to 2 search for the 130Tedecay. The benefit of using Te is the high natural abundance of 130Te. This experiment is in the building up phase at Gran Sasso Laboratory and is planned to start data taking with the full amount in 2014. Various other bolometers are currently explored like CaMoO (AMoRE) and ZnSe (LUCIFER) to search for 100Mo 4 and82Serespectively. Finally tracking devices in form of TPCs using the double beta emitter in form of thin foils are explored. Due to the tracking it is possible to measure the individual electron energiesandtheopeninganglebetweenthem. Thismightbeimportantif0νββ-decayis discoveredastheneutrinomassmechanismandright-handedweakcurrentcontribution differ significantly in these quantities. As a next step in a serious of experiments Su- perNEMOisplanningtouseatleast100kgof82Seinformof20TPCmoduleswith5 kgsourcemasspermodule. Afirstdemonstratormoduleissupposedtostartdatataking in2014. 6. Nuclearmatrixelements-Theoryandexperiment Theconversionofanobservedhalf-lifeoritslimitinto(cid:104)m (cid:105)requirestheknowledgeof ee thenucleartransitionmatrixelements, seeEquation(2). Anyuncertaintyinthenuclear matrixelementduetoitssquaredependenceresultsinasignificantuncertaintyinthede- 7 KaiZuber ducedneutrinomass. Thisisanotherimportantargumentforthemulti-isotopeapproach. Varioustheoreticalmethodshavebeenappliedinthepast,dominantlynuclearshellmodel (NSM)andquasi-randomphaseapproximation(QRPA)calculations,whichwererecently joinedbynewmethodsliketheInteractionBosonModel(IBM)andenergydensityfunc- tional treatment (GCM). A compilation of the available calculations normalised to one valueofr andg isgiveninFigure(4). Ascanbeseenthereisquitesomespreadinthe 0 A obtainedvaluesanduncertaintiesarenotclaimedforallmethods. As all double beta emitters are even-even nuclei their ground state transitions are char- acterised as 0+ → 0+ transitions. Given that factthat almost all 2νββ-decayhalf-lives areknowntheassociatedmatrixelementM2ν canbededuced. However,thesearepure Gamow-Tellertransitionsonlymediatedbythe1+statesoftheintermediatenucleusand restricted the less than 5 MeV and they contribute only a fraction to M0ν. In the latter casealllevelsuptoabout100MeVwithallmultipolaritiescancontribute. Furthermore, effectsandtreatmentofshortrangecorrelationsbecomeveryimportant[23]. Thematrix elementsitselfmustbecalculatedseparatelyfortheindividualprocessesdiscussedinsec- tion(1). Thus,theycontaininformationonthephysicsprocessinvolvedaswell[24–26]. Given the complexity of the problem and a lack of missing experimental information, a program was started to improve the situation from the experimental point [27]. Part of theprogramispreciseQ-valuedeterminationsusingPenningtraps(seeTable1),charge exchangereactionsinformof(3He,t)and(d,2He)reactionstodeterminetheGamow- TellerstrengthB forthetransitionstotheintermediate1+-statesandnucleontransfer GT reactions.Thisleadtonewinsightsandrefinementsofthecalculations. Figure4. Compilationofnuclearmatrixelementcalculationsfortheelevenrelevant isotopes. Existingpublicationswereusedandnormalisedtoanucleonradiusofr = 0 1.2fmandg =1.25(from[19]). A 8 KaiZuber 7. Alternativeprocessesincludingpositronsandelectroncapture Anequivalentprocesstotheonediscussedisβ+β+-decayalsoincombinationwithelec- troncapture(EC).TherearethreedifferentvariantspossibledependingontheQ-value: (Z,A) → (Z−2,A)+2e+(+2ν ) (β+β+) (11) e e−+(Z,A) → (Z−2,A)+e+(+2ν ) (β+/EC ) (12) B e 2e−+(Z,A) → (Z−2,A)(+2ν ) (EC/EC ) (13) B e β+β+ is always accompanied by EC/EC or β+/EC-decay. The positron production reduces the effective Q-value by 2m c2 per positron. Therefore, the rate for β+β+ is e small and energetically only possible for six nuclides, however it would have a striking signature with four 511 keV gamma rays. It was shown that the β+/EC-mode has an enhancedsensitivitytoright-handedweakcurrents[28]andmightbevaluabletoexplore if0νββ-decayisdiscovered. ThefullQ-valueisavailableintheEC/EC modewhichis thehardesttodetectexperimentally. However,itwasproposed[29,30]thatifanexcited state of the daughter nucleus is degenerate with the original ground state a resonance enhancementinthedecayratecouldoccurandthede-excitationgammaswouldserveas anicesignal. Duetothesharpnessoftheresonanceamoredetailedstudyofcandidates hadtowaitforPenningtrapsenteringthefieldandexploringreasonablecandidates. The mostreliableoneseemstobe152Gd(seeFigure5)wheresuchascenarioisrealised[31]. Despitethisniceeffect,toachievethesamesensitivityof(cid:104)m (cid:105)asin0νββ-decayseems ee torequireameasurementanorderofmagnitudelongermakingthismethodslightlyless attractive. Figure5. ResonanceenhancementfactorforneutrinolessECECrelativeto54Febased onprecisionmassspectrometrywithPenningtraps(from[31]). References [1] E.Otten,C.Weinheimer,Rep.Prog.Phys.71,086201(2008) 9 KaiZuber [2] J.Schechter,J.W.F.Valle,Phys.Rev.D23,1666(1981) [3] V.Telloetal.,Phys.Rev.Lett.106,151801(2011) [4] W.Rodejohann,Int.JournalofModernPhysicsE20,1833(2011) [5] T.Schwetz,M.Tortola,J.W.F.Valle,NewJourn.Phys.13,063004(2011) [6] G.L.Foglietal.,Phys.Rev.D84,053007(2011) [7] B.Aharmimetal.,PreprintarXiv:1109.0763 [8] K.Abeetal.,Phys.Rev.Lett.107,041801(2011) [9] P.Adamsonetal.,PreprintarXiv:1108.0015 [10] H.deKerret,TalkpresentedatLowNu2011Konferenz,Seoul,9-12.Nov.2011 [11] M.Lindner,A.Merle,W.Rodejohann,Phys.Rev.D73,053005(2006) [12] G.Audi,A.H.Wapstra,C.Thibault,Nucl.Phys.A729,337(2003) [13] A.S.Barabash,Phys.Rev.C81,035501(2010) [14] N.Ackermanetal.,PreprintarXiv:1108.4193 [15] G. Gratta, Talk presented at Int. Workshop on Double Decay and Neutrinos, Osaka, 14-17 Nov.2011 [16] H.V.Klapdor-Kleingrothausetal.,Phys.Lett.B578,54(2004) [17] H.V.Klapdor-Kleingrothaus,I.V.Krivosheina,Mod.Phys.Lett.A21,1547(2006) [18] M.Duerr,M.Lindner,K.Zuber,Phys.Rev.D84,093004(2011) [19] A.Dueck,W.Rodejohann,K.Zuber,Phys.Rev.D83,113010(2011) [20] N.F.deBarros,K.Zuber,JournalofPhysicsG38,105201(2011) [21] I.Abtetal.,Preprinthep-ex/0404039 [22] D.Budjasetal.,JINST4,P10007(2009) [23] F.Simkovicetal.,Phys.Rev.C83,015502(2011) [24] G.L.Foglietal.,Phys.Rev.D80,015024(2009) [25] F.Deppisch,H.Pa¨s,Phys.Rev.Lett.98,232501(2007) [26] A.Faessleratal.,Phys.Rev.D83,113015(2011) [27] K.Zuber,Preprintnucl-ex/0511009 [28] M.Hirschetal.,Z.Phys.A347,151(1994) [29] J.Bernabeu,A.DeRujula,C.Jarlskog,Nucl.Phys.B223,15(1983) [30] Z.Sujkowski,S.Wycech,Phys.Rev.C70,052501(2004) [31] S.Eliseevetal.,Phys.Rev.Lett.106,052504(2011) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.