ebook img

Neural Networks in Atmospheric Remote Sensing (Artech House Remote Sensing Library) PDF

232 Pages·2009·4.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neural Networks in Atmospheric Remote Sensing (Artech House Remote Sensing Library)

Neural Networks in Atmospheric Remote Sensing Thisisasamplelibrarystatement Neural Networks in Atmospheric Remote Sensing William J. Blackwell Frederick W. Chen Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13 978-1-59693-372-9 Cover design by Yekaterina Ratner © 2009 Massachusetts Institute of Technology Lincoln Laboratory 244 Wood Street Lexington, MA 02420 All rights reserved. This work was funded in part by the National Oceanic and Atmospheric Administration under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. PrintedandboundintheUnitedStatesofAmerica.Nopartofthisbookmaybereproducedor utilizedinanyformorbyanymeans,electronicormechanical,includingphotocopying,record- ing,orbyanyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher. All terms mentioned in this book that are known to be trademarks or service marks havebeenappropriatelycapitalized.ArtechHousecannotattesttotheaccuracyofthisinforma- tion.Useofaterminthisbookshouldnotberegardedasaffectingthevalidityofanytrademark or service mark. 10 9 8 7 6 5 4 3 2 1 Disclaimer: This eBook does not include the ancillary media that was packaged with the original printed version of the book. Toourfamilies Contents Preface xiii 1 Introduction 1 1.1 PresentChallenges 1 1.2 SolutionsBasedonNeuralNetworks 2 1.3 MathematicalNotation 3 References 5 2 Physical Background of Atmospheric Remote Sensing 7 2.1 OverviewoftheCompositionandThermalStructure oftheEarth’sAtmosphere 7 2.1.1 ChemicalCompositionoftheAtmosphere 8 2.1.2 VerticalDistributionofPressureandDensity 9 2.1.3 ThermalStructureoftheAtmosphere 10 2.1.4 CloudMicrophysics 11 2.2 ElectromagneticWavePropagation 12 2.2.1 Maxwell’sEquationsandtheWaveEquation 12 2.2.2 Polarization 13 2.2.3 ReflectionandTransmissionataPlanarBoundary 15 2.3 AbsorptionofElectromagneticWavesbyAtmosphericGases 16 2.3.1 MechanismsofMolecularAbsorption 17 2.3.2 LineShapes 17 2.3.3 AbsorptionCoefficientsandTransmissionFunctions 17 vii viii NeuralNetworksinAtmosphericRemoteSensing 2.3.4 TheAtmosphericAbsorptionSpectra 18 2.4 ScatteringofElectromagneticWavesbyAtmosphericParticles 19 2.4.1 MieScattering 19 2.4.2 TheRayleighApproximation 21 2.4.3 ComparisonofScatteringandAbsorptionbyHydrometeors 22 2.5 RadiativeTransferinaNonscatteringPlanar-Stratified Atmosphere 22 2.5.1 EquilibriumRadiation:PlanckandKirchhoff’sLaws 24 2.5.2 RadiativeTransferDuetoEmissionandAbsorption 24 2.5.3 IntegralFormoftheRadiativeTransferEquation 25 2.5.4 WeightingFunction 27 2.6 PassiveSpectrometerSystems 30 2.6.1 OpticalSpectrometers 31 2.6.2 MicrowaveSpectrometers 32 2.7 Summary 33 References 35 3 An Overview of Inversion Problems in Atmospheric Remote Sensing 37 3.1 MathematicalNotation 38 3.2 Optimality 38 3.3 MethodsThatExploitStatisticalDependence 39 3.3.1 TheBayesianApproach 39 3.3.2 LinearandNonlinearRegressionMethods 41 3.4 PhysicalInversionMethods 45 3.4.1 TheLinearCase 45 3.4.2 TheNonlinearCase 46 3.5 HybridInversionMethods 48 3.5.1 ImprovedRetrievalAccuracy 48 3.5.2 ImprovedRetrievalEfficiency 49 3.6 ErrorAnalysis 49 3.6.1 AnalyticalAnalysis 49 3.6.2 PerturbationAnalysis 50 3.7 Summary 51 References 52 Contents ix 4 Signal Processing and Data Representation 55 4.1 AnalysisoftheInformationContentofHyperspectralData 56 4.1.1 ShannonInformationContent 56 4.1.2 DegreesofFreedom 58 4.2 PrincipalComponentsAnalysis(PCA) 59 4.2.1 NonlinearPCA 61 4.2.2 LinearPCA 61 4.2.3 PrincipalComponentsTransforms 63 4.2.4 TheProjectedPCTransform 64 4.2.5 EvaluationofRadianceCompressionPerformanceUsingTwo DifferentMetrics 67 4.3 RepresentationofNonlinearFeatures 69 4.4 Summary 70 References 71 5 Introduction to Multilayer Perceptron Neural Networks 73 5.1 ABriefOverviewofMachineLearning 74 5.1.1 SupervisedandUnsupervisedLearning 74 5.1.2 ClassificationandRegression 74 5.1.3 KernelMethods 75 5.1.4 SupportVectorMachines 76 5.1.5 FeedforwardNeuralNetworks 78 5.2 FeedforwardMultilayerPerceptronNeuralNetworks 82 5.2.1 NetworkTopology 82 5.2.2 NetworkTraining 84 5.3 SimpleExamples 85 5.3.1 Single-InputNetworks 85 5.3.2 Two-InputNetworks 93 5.4 Summary 94 5.5 Exercises 95 References 96 6 A Practical Guide to Neural Network Training 97 6.1 DataSetAssemblyandOrganization 97 6.1.1 DataSetIntegrity 98 6.1.2 TheImportanceofanExtensiveandComprehensiveDataSet 98 6.1.3 DataSetPartitioning 98

Description:
A neural network refers to interconnecting artificial neurons that mimic the properties of biological neurons to perform sophisticated, intelligent tasks. This authoritative reference offers a comprehensive understanding of the underpinnings and practical applications of artificial neural networks a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.