ebook img

Neural Networks: Computational Models and Applications PDF

309 Pages·2007·8.839 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neural Networks: Computational Models and Applications

HuajinTang,KayChenTanandZhangYi NeuralNetworks:ComputationalModelsandApplications StudiesinComputationalIntelligence,Volume53 Editor-in-chief Prof.JanuszKacprzyk SystemsResearchInstitute PolishAcademyofSciences ul.Newelska6 01-447Warsaw Poland E-mail:[email protected] Furthervolumesofthisseries Vol.43.FabriceGuillet,HowardJ.Hamilton(Eds.) canbefoundonourhomepage: QualityMeasuresinDataMining,2007 springer.com ISBN978-3-540-44911-9 Vol.31.AjithAbraham,CrinaGrosan,VitorinoRamos Vol.44.NadiaNedjah,LuizadeMacedo (Eds.) Mourelle,MarioNetoBorges, StigmergicOptimization,2006 NivalNunesdeAlmeida(Eds.) ISBN978-3-540-34689-0 IntelligentEducationalMachines,2007 ISBN978-3-540-44920-1 Vol.32.AkiraHirose Complex-ValuedNeuralNetworks,2006 Vol.45.VladimirG.Ivancevic,TijanaT.Ivancevic ISBN978-3-540-33456-9 Neuro-FuzzyAssociativeMachineryforComprehensive BrainandCognitionModeling,2007 Vol.33.MartinPelikan,KumaraSastry,Erick ISBN978-3-540-47463-0 Cantu´-Paz(Eds.) ScalableOptimizationviaProbabilistic Vol.46.ValentinaZharkova,LakhmiC.Jain Modeling,2006 ArtificialIntelligenceinRecognitionandClassification ISBN978-3-540-34953-2 ofAstrophysicalandMedicalImages,2007 Vol.34.AjithAbraham,CrinaGrosan,Vitorino ISBN978-3-540-47511-8 Ramos(Eds.) Vol.47.S.Sumathi,S.Esakkirajan SwarmIntelligenceinDataMining,2006 FundamentalsofRelationalDatabaseManagement ISBN978-3-540-34955-6 Systems,2007 Vol.35.KeChen,LipoWang(Eds.) ISBN978-3-540-48397-7 TrendsinNeuralComputation,2007 Vol.48.H.Yoshida(Ed.) ISBN978-3-540-36121-3 AdvancedComputationalIntelligenceParadigms Vol.36.IldarBatyrshin,JanuszKacprzyk,Leonid inHealthcare,2007 Sheremetor,LotfiA.Zadeh(Eds.) ISBN978-3-540-47523-1 Preception-basedDataMiningandDecisionMaking Vol.49.KeshavP.Dahal,KayChenTan,PeterI.Cowling inEconomicsandFinance,2006 (Eds.) ISBN978-3-540-36244-9 EvolutionaryScheduling,2007 Vol.37.JieLu,DaRuan,GuangquanZhang(Eds.) ISBN978-3-540-48582-7 E-ServiceIntelligence,2007 Vol.50.NadiaNedjah,LeandrodosSantosCoelho, ISBN978-3-540-37015-4 LuizadeMacedoMourelle(Eds.) Vol.38.ArtLew,HolgerMauch MobileRobots:TheEvolutionaryApproach,2007 DynamicProgramming,2007 ISBN978-3-540-49719-6 ISBN978-3-540-37013-0 Vol.51.ShengxiangYang,YewSoonOng,YaochuJin Vol.39.GregoryLevitin(Ed.) Honda(Eds.) ComputationalIntelligenceinReliabilityEngineering, EvolutionaryComputationinDynamicandUncertain 2007 Environment,2007 ISBN978-3-540-37367-4 ISBN978-3-540-49772-1 Vol.40.GregoryLevitin(Ed.) Vol.52.AbrahamKandel,HorstBunke,MarkLast(Eds.) ComputationalIntelligenceinReliabilityEngineering, AppliedGraphTheoryinComputerVisionandPattern 2007 Recognition,2007 ISBN978-3-540-37371-1 ISBN978-3-540-68019-2 Vol.41.MukeshKhare,S.M.ShivaNagendra(Eds.) Vol.53.HuajinTang,KayChenTan,ZhangYi ArtificialNeuralNetworksinVehicularPollution NeuralNetworks:ComputationalModels Modelling,2007 andApplications,2007 ISBN978-3-540-37417-6 ISBN978-3-540-69225-6 Vol.42.BerndJ.Kra¨mer,WolfgangA.Halang(Eds.) ContributionstoUbiquitousComputing,2007 ISBN978-3-540-44909-6 Huajin Tang Kay Chen Tan Zhang Yi Neural Networks: Computational Models and Applications With 103 Figures and 27 Tables Dr.HuajinTang Prof.KayChenTan QueenslandBrainInstitute DepartmentofElectrical UniversityofQueensland andComputerEngineering QLD4072Australia NationalUniversityofSingapore E-mail:[email protected] 4EngineeringDrive3 Singapore117576 E-mail:[email protected] Prof.ZhangYi ComputationalIntelligenceLaboratory SchoolofComputerScience andEngineering UniversityofElectronicScience andTechnologyofChina Chengdu610054P.R.China E-mail:[email protected] LibraryofCongressControlNumber:2006939344 ISSNprintedition:1860-949X ISSNelectronicedition:1860-9503 ISBN-10 3-540-69225-8SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-69225-6SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer-Verlag.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:176)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:deblik,Berlin TypesettingbytheauthorsusingaSpringerLATEXmacropackage Printedonacid-freepaper SPIN:11544272 89/SPi 543210 To our family, for their loves and supports. Huajin Tang Kay Chen Tan Zhang Yi Preface Artificial neural networks, or simply called neural networks, refer to the various mathematical models of human brain functions such as perception, computationandmemory.Itisafascinatingscientificchallengeofourtimeto understand how the human brain works. Modeling neural networks facili- tates us in investigating the information processing occurred in brain in a mathematical or computational manner. On this manifold, the complexity and capability of modeled neural networks rely on our present understand- ing of biological neural systems. On the other hand, neural networks provide efficient computation methods in making intelligent machines in multidisci- plinary fields, e.g., computational intelligence, robotics and computer vision. Inthepasttwodecades,researchinneuralnetworkshaswitnessedagreat deal of accomplishments in the areas of theoretical analysis, mathematical modeling and engineering application. This book does not intend to cover all the advances in all aspects, and for it is formidable even in attempting to do so. Significant efforts are devoted to present the recent discoveries that the authorshavemademainlyinfeedforwardneuralnetworks,recurrentnetworks and bio-inspired recurrent network studies. The covered topics include learn- ingalgorithm,neuro-dynamicsanalysis,optimizationandsensoryinformation processing, etc. In writing, the authors especially hope the book to be helpful for the readers getting familiar with general methodologies of research in the neural network areas, and to inspire new ideas in the concerned topics. We received significant support and assistance from the Department of Electrical and Computer Engineering, and we are especially grateful to the colleagues in the Control & Simulation Lab and Zhang Yi’s CI lab, where many simulation experiments and meaningful work were carried out. We are grateful to a lot of people who helped us directly or indirectly. We are extremely grateful to the following professors for their valuable sugges- tions, continuous encouragements and constructive criticisms: Ben M. Chen, Jian-Xin Xu, National University of Singapore; Weinian Zhang, Sichuan Uni- versity, China; C.S. Poon, Massachusetts Institute of Technology; Xin Yao, University of Birmingham, UK; Hussein A. Abbass, University of New South VIII Preface Wales, Australian Defence Force Academy Campus. We are very thankful to Eujin Teoh for his careful reading of the draft. HuajinTangwouldliketothankGeoffreyGoodhill,UniversityofQueens- land,forhisvaluablehelps.ZhangYiwouldliketothankHongQu,JianChen Lv and Lei Zhang, University of Electronic Science and Technology of China, for their useful discussions. Australia Huajin Tang Singapore Kay Chen Tan China Zhang Yi May 2006 Contents List of Figures.................................................XV List of Tables ..................................................XXI 1 Introduction............................................... 1 1.1 Backgrounds............................................ 1 1.1.1 Feed-forward Neural Networks ...................... 1 1.1.2 Recurrent Networks with Saturating Transfer Functions ........................................ 2 1.1.3 Recurrent Networks with Nonsaturating Transfer Functions ........................................ 4 1.2 Scopes ................................................. 5 1.3 Organization............................................ 6 2 Feedforward Neural Networks and Training Methods ...... 9 2.1 Introduction ............................................ 9 2.2 Error Back-propagation Algorithm......................... 9 2.3 Optimal Weight Initialization Method...................... 12 2.4 The Optimization-Layer-by-Layer Algorithm................ 14 2.4.1 Optimization of the Output Layer ................... 15 2.4.2 Optimization of the Hidden Layer ................... 16 2.5 Modified Error Back-Propagation Method .................. 18 3 New Dynamical Optimal Learning for Linear Multilayer FNN ...................................................... 23 3.1 Introduction ............................................ 23 3.2 Preliminaries............................................ 24 3.3 The Dynamical Optimal Learning ......................... 25 3.4 Simulation Results....................................... 28 3.4.1 Function Mapping................................. 28 3.4.2 Pattern Recognition ............................... 30 X Contents 3.5 Discussions ............................................. 33 3.6 Conclusion ............................................. 33 4 Fundamentals of Dynamic Systems ........................ 35 4.1 Linear Systems and State Space ........................... 35 4.1.1 Linear Systems in R2 .............................. 35 4.1.2 Linear Systems in Rn.............................. 38 4.2 Nonlinear Systems....................................... 41 4.3 Stability, Convergence and Bounded-ness ................... 41 4.4 Analysis of Neuro-dynamics............................... 46 4.5 Limit Sets, Attractors and Limit Cycles .................... 51 5 Various Computational Models and Applications .......... 57 5.1 RNNs as a Linear and Nonlinear Programming Solver........ 57 5.1.1 Recurrent Neural Networks ......................... 58 5.1.2 Comparison with Genetic Algorithms ................ 59 5.2 RNN Models for Extracting Eigenvectors ................... 66 5.3 A Discrete-Time Winner-Takes-All Network ................ 68 5.4 A Winner-Takes-All Network with LT Neurons.............. 70 5.5 Competitive-Layer Model for Feature Binding and Segmentation ....................................... 74 5.6 A Neural Model of Contour Integration .................... 76 5.7 Scene Segmentation Based on Temporal Correlation ......... 77 6 Convergence Analysis of Discrete Time RNNs for Linear Variational Inequality Problem ............................ 81 6.1 Introduction ............................................ 81 6.2 Preliminaries............................................ 82 6.3 Convergence Analysis: A is a Positive Semidefinite Matrix .... 83 6.4 Convergence Analysis: A is a Positive Definite Matrix ........ 85 6.5 Discussions and Simulations .............................. 87 6.6 Conclusions............................................. 96 7 Parameter Settings of Hopfield Networks Applied to Traveling Salesman Problems ........................... 99 7.1 Introduction ............................................ 99 7.2 TSP Mapping and CHN Model............................100 7.3 The Enhanced Lyapunov Function for Mapping TSP.........102 7.4 Stability Based Analysis for Network’s Activities ............104 7.5 Suppression of Spurious States ............................105 7.6 Setting of Parameters ....................................112 7.7 Simulation Results and Discussions ........................112 7.8 Conclusion .............................................115 Contents XI 8 Competitive Model for Combinatorial Optimization Problems ..................................................117 8.1 Introduction ............................................117 8.2 Columnar Competitive Model.............................118 8.3 Convergence of Competitive Model and Full Valid Solutions ..120 8.4 Simulated Annealing Applied to Competitive Model .........123 8.5 Simulation Results.......................................124 8.6 Conclusion .............................................128 9 Competitive Neural Networks for Image Segmentation ....129 9.1 Introduction ............................................129 9.2 Neural Networks Based Image Segmentation ................130 9.3 Competitive Model of Neural Networks.....................131 9.4 Dynamical Stability Analysis .............................132 9.5 Simulated Annealing Applied to Competitive Model .........134 9.6 Local Minima Escape Algorithm Applied to Competitive Model..................................................135 9.7 Simulation Results.......................................137 9.7.1 Error-Correcting ..................................137 9.7.2 Image Segmentation ...............................140 9.8 Conclusion .............................................143 10 Columnar Competitive Model for Solving Multi-Traveling Salesman Problem.........................................145 10.1 Introduction ............................................145 10.2 The MTSP Problem .....................................146 10.3 MTSP Mapping and CCM Model .........................148 10.4 Valid Solutions and Convergence Analysis of CCM for MTSP .151 10.4.1 Parameters Settings for the CCM Applied to MTSP ...152 10.4.2 Dynamical Stability Analysis .......................153 10.5 Simulation Results.......................................156 10.6 Conclusions.............................................159 11 Improving Local Minima of Columnar Competitive Model for TSPs...................................................161 11.1 Introduction ............................................161 11.2 Performance Analysis for CCM............................162 11.3 An Improving for Columnar Competitive Model.............165 11.3.1 Some Preliminary Knowledge .......................165 11.3.2 A Modified Neural Representation for CCM ..........167 11.3.3 The Improvement for Columnar Competitive Model ...168 11.4 Simulation Results.......................................171 11.5 Conclusions.............................................174

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.