Neural Networks and Intellect: Using Model-Based Concepts Leonid I. Perlovsky OXFORD UNIVERSITY PRESS N N I EURAL ETWORKS AND NTELLECT This page intentionally left blank N N I EURAL ETWORKS AND NTELLECT Using Model-Based Concepts Leonid I. Perlovsky • New York Oxford OXFORD UNIVERSITY PRESS 2001 OxfordUniversityPress Oxford NewYork Athens Auckland Bangkok Bogota´ BuenosAires Calcutta CapeTown Chennai DaresSalaam Delhi Florence HongKong Istanbul Karachi KualaLumpur Madrid Melbourne MexicoCity Mumbai Nairobi Paris Sa˜oPaulo Shanghai Singapore Taipei Tokyo Toronto Warsaw andassociatedcompaniesin Berlin Ibadan Copyright©2001byOxfordUniversityPress,Inc. PublishedbyOxfordUniversityPress,Inc., 198MadisonAvenue,NewYork,NewYork,10016 http://www.oup-usa.org OxfordisaregisteredtrademarkofOxfordUniversityPress Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise, withoutthepriorpermissionofOxfordUniversityPress. LibraryofCongressCataloging-in-PublicationData Perlovsky,LeonidI. Neuralnetworksandintellect:usingmodel-basedconcepts/LeonidI.Perlovsky. p. cm. Includesbibliographicalreferencesandindex. ISBN0-19-511162-1 1.Neuralnetworks(computerscience) 2.Mathematicalmodels. I.Title. QA76.87.P435 2000 006.3'2—dc21 00-026297 Printing(lastdigit):987654321 PrintedintheUnitedStatesofAmerica onacid-freepaper CONDENSED TABLE OF CONTENTS PREFACE xix PART ONE: OVERVIEW: 2300 YEARS OF PHILOSOPHY, 100 YEARS OF MATHEMATICAL LOGIC, AND 50 YEARS OF COMPUTATIONAL INTELLIGENCE 1 Introduction: Concepts of Intelligence 3 2 Mathematical Concepts of Mind 51 3 Mathematical versus Metaphysical Concepts of Mind 125 PART TWO: MODELING FIELD THEORY: NEW MATHEMATICAL THEORY OF INTELLIGENCE WITH ENGINEERING APPLICATIONS 4 Modeling Field Theory 153 5 MLANS: Maximum Likelihood Adaptive Neural System for Grouping and Recognition 206 6 Einsteinian Neural Network 263 7 Prediction, Tracking, and Dynamic Models 289 8 Quantum Modeling Field Theory (QMFT) 321 9 Fundamental Limitations on Learning 329 10 Intelligent System Organization: MFT, Genetic Algorithms, and Kant 356 PART THREE: FUTURISTIC DIRECTIONS: FUN STUFF: MIND—PHYSICS + MATHEMATICS + CONJECTURES 11 Gödel Theorems, Mind, and Machine 383 12 Toward Physics of Consciousness 391 LISTOFSYMBOLS 425 DEFINITIONS 429 BIBLIOGRAPHY 447 INDEX 461 v This page intentionally left blank CONTENTS PREFACE xix PART ONE: OVERVIEW: 2300 YEARS OF PHILOSOPHY, 100 YEARS OF MATHEMATICAL LOGIC, AND 50 YEARS OF COMPUTATIONAL INTELLIGENCE 1 Introduction: Concepts of Intelligence 3 1.1 CONCEPTSOFINTELLIGENCEINMATHEMATICS,PSYCHOLOGY, ANDPHILOSOPHY 3 1.1.1 WhatIsIntelligence? 3 1.1.2 Plato,Occam,andNeuralNetworks 4 1.1.3 Rule-BasedArtificialIntelligence,Complexity,and Aristotle 6 1.1.4 Philosophyvs.ArchitectureofIntelligentTracker 8 1.1.5 Summary 12 1.2 PROBABILITY,HYPOTHESISCHOICE,PATTERNRECOGNITION, ANDCOMPLEXITY 13 1.2.1 Prerequisite:BasicNotionsoftheTheoryofProbability 13 1.2.2 ClassicalHypothesesChoiceParadigmsandDefinitions 20 1.2.3 PatternRecognition 22 1.2.4 APrioriInformationandAdaptation 24 1.2.5 MathematicalFormulationofModel-BasedRecognition 27 1.2.6 ConundrumofCombinatorialComplexity 29 1.3 PREDICTION,TRACKING,ANDDYNAMICMODELS 29 1.3.1 LinearRegression 30 1.3.2 RegressionasanExpectation 32 1.3.3 Autoregression 33 1.3.4 Tracking 35 vii viii Contents 1.3.5 AssociationProblem 37 1.4 PREVIEW:INTELLIGENCE,INTERNALMODEL,SYMBOL,EMOTIONS, ANDCONSCIOUSNESS 42 Notes 45 BibliographicalNotes 46 Problems 47 2 Mathematical Concepts of Mind 51 2.1 COMPLEXITY,ARISTOTLE,ANDFUZZYLOGIC 52 2.1.1 ConundrumofCombinatorialComplexity 52 2.1.2 Adaptivity,Apriority,andComplexity 53 2.1.3 FuzzyLogicandComplexity 55 2.2 NEARESTNEIGHBORSANDDEGENERATEGEOMETRIES 58 2.2.1 TheNearestNeighborConcept 58 2.2.2 MathematicalFormulation 59 2.2.3 WhatConstitutesSimpleandComplexClassification Problems? 59 2.2.4 DegenerateGeometryofClassificationSpaces 60 2.3 GRADIENTLEARNING,BACKPROPAGATION,ANDFEEDFORWARD NEURALNETWORKS 62 2.3.1 ConceptofDiscriminatingSurfacesandGradient Learning 62 2.3.2 MathematicalFormulation 64 2.3.3 LearningDisability 67 2.4 RULE-BASEDARTIFICIALINTELLIGENCE 68 2.4.1 Minsky,Apriority,andAdaptivity 68 2.4.2 SoarProductionSystem 70 2.5 CONCEPTOFINTERNALMODEL 73 2.5.1 Prolegomena:Parametricvs.NonparametricEstimation 73 2.5.2 Model-BasedVision(MBV) 74 2.5.3 AdaptivityandMBV 75 2.6 ABDUCTIVEREASONING 76 2.6.1 Deduction,Induction,andAbduction 76 2.6.2 AbductiveReasoningTreesandBayesianNetworks 77 2.7 STATISTICALLEARNINGTHEORYANDSUPPORT VECTORMACHINES 79 2.7.1 ModelComplexity:RiskMinimizationvs.PDFEstimation 79 Contents ix 2.7.2 ConsistencyofERMandVCDimension 81 2.7.3 SupportVectorMachines(SVM) 82 2.8 AIDEBATESPASTANDFUTURE 85 2.8.1 ArgumentsandDisagreements:AnOverview 85 2.8.2 CanaMachineThink? 87 2.8.3 Rule-BasedAIvs.Connectivism 90 2.8.4 EmergingDebates 91 2.9 SOCIETYOFMIND 94 2.9.1 SocietyofAgents 94 2.9.2 TypesofAgents 95 2.9.3 FramesandUnityofApperception 96 2.9.4 LimitationsandWhatIsNext 96 2.10 SENSORFUSIONANDJDLMODEL 97 2.10.1 SensorFusionandOriginsofJDLModel 97 2.10.2 Definitions,Issues,andTypesofFusionProblems 98 2.10.3 SensorFusionLevels 99 2.10.4 HierarchyofJDLModelOrganization 100 2.11 HIERARCHICALORGANIZATION 100 2.12 SEMIOTICS 104 2.13 EVOLUTIONARYCOMPUTATION,GENETICALGORITHMS, ANDCAS 106 2.13.1 ComplexAdaptiveSystems(CAS) 107 2.13.2 CAS:Complexityvs.Fuzziness 109 2.14 NEURALFIELDTHEORIES 110 2.14.1 Grossberg’sMethod:PhysicsofMind 110 2.14.2 ARTNeuralNetwork 111 2.14.3 IllusionsandAPrioriContentsofVision 114 2.14.4 MotorCoordinationandSensorimotorControl 115 2.14.5 EmotionsandLearning 116 2.14.6 QuantumNeurodynamics 118 2.14.7 ModelingFieldTheory 119 2.15 INTELLIGENCE,LEARNING,ANDCOMPUTABILITY 120 2.15.1 Computability:Turingvs.Physics 120 2.15.2 ComputationalMethodsofIntelligence:Summary 121 Notes 121 BibliographicalNotes 122 Problems 124
Description: